首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

2.
A series of side‐chain‐tethered copolymers containing the N‐(2‐ethylhexyl)‐N′‐(thiophene‐3‐yl)‐3,4:9,10‐perylenebis(dicarboximide) (thiophene‐PDI) moieties and 4,4‐diethylhexyl‐cyclopenta[2,1‐b:3,4‐b′]dithiophene unit were synthesized via Grignard metathesis polymerizations. With the incorporation of pendent perylenebis(dicarboximide) (PDI) moieties as acceptor side chains and thiophene as the donor backbone, the copolymers exhibited the intramolecular donor–acceptor characteristic and displayed a panchromatic absorption ranging from 290 to 1100 nm and ideal bandgaps of 1.49 to 1.52 eV. Due to the coplanarity of PDI moieties, the charge separation and transfer process were more effective and enhanced after photoexcitation. When increased the weight ratio of PC61BM:polymer to 3, the Jsc could be raised significantly. The value of bandgap decreased slightly, and both Voc and Jsc showed an upward trend with the increase of molar ratio of thiophene‐PDI unit from 50% (the copolymer P11) to 75% (the copolymer P13). The polymer/PC61BM devices have shown a significant improvement from 0.45 to 1.66% with a judicious modulation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1978–1988  相似文献   

3.
We report the synthesis and characterization of a series of novel diblock copolymers, poly(cholesteryl methacrylate‐b‐2‐hydroxyethyl methacrylate) (PCMA‐b‐PHEMA). Monomers, cholesteryl methacrylate (CMA) and 2‐(trimethylsiloxy)ethyl methacrylate (HEMA‐TMS), were prepared from methyacryloyl chloride and 2‐hydroxyethyl methacrylate, respectively. Homopolymers of CMA, PCMA, with well‐defined molecular weights and polydispersity indices (PDI), were prepared by reversible addition fragmentation and chain transfer (RAFT) method. Precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), were synthesized using PCMA as macromolecular chain transfer agent and monomer, HEMA‐TMS. Product diblock copolymers, PCMA‐b‐PHEMA, were prepared by deprotecting trimethylsilyl units in the precursor diblock copolymers using acid catalysts. Detailed molecular characterization of the precursor diblock copolymers, PCMA‐b‐P(HEMA‐TMS), and the product diblock copolymers, PCMA‐b‐PHEMA, confirmed the composition and structure of these polymers. This versatile synthetic strategy can be used to prepare new amphiphilic block copolymers with cholesterol in one block and hydrogen‐bonding moieties in the second block. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6801–6809, 2008  相似文献   

4.
A series of one donor–two acceptor (D–A1)‐(D–A2) random terpolymers containing a 2,7‐carbazole donor and varying compositions of perylene diimide (PDI) and naphthalene diimide (NDI) acceptors was synthesized via Suzuki coupling polymerization. The optical properties of the terpolymers are weighted sums of the constituent parent copolymers and all show strong absorption over the 400 to 700 nm range with optical bandgaps ranging from 1.77 to 1.87 eV, depending on acceptor composition. The copolymers were tested as acceptor materials in bulk heterojunction all‐polymer solar cells using poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b;4,5‐b′]dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene)‐2,6‐diyl] (PBDTTT‐C) as the donor material. In contrast to the optoelectronic properties, the measured device parameters are not composition dependent, and rather depend solely on the presence of the NDI unit, where the devices containing any amount of NDI perform half as well as those using the parent polymer containing only carbazole and PDI. Overall this is the first example of a one donor–two acceptor random terpolymer system containing perylene diimide (PDI) and naphthalene diimide (NDI) acceptor units, and demonstrates a facile method of tuning polymer optoelectronic properties while minimizing the need for complicated synthetic and purification steps. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3337–3345  相似文献   

5.
In this study, we synthesized a new polymer, PCTDBI , containing alternating carbazole and thiadiazole‐benzoimidazole (TDBI) units. This polymer (number‐average molecular weight = 25,600 g mol?1), which features a planar imidazole structure into the polymeric main chain, possesses reasonably good thermal properties (Tg = 105 °C; Td = 396 °C) and an optical band gap of 1.75 eV that matches the maximum photon flux of sunlight. Electrochemical measurements revealed an appropriate energy band offset between the polymer's lowest unoccupied molecular orbital and that of PCBM, thereby allowing efficient electron transfer between the two species. A solar cell device incorporating PCTDBI and PCBM at a blend ratio of 1:2 (w/w) exhibited a power conversion efficiency of 1.20%; the corresponding device incorporating PCTDBI and PC71BM (1:2, w/w) exhibited a PCE of 1.84%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
A series of novel soluble donor‐acceptor low‐bandgap‐conjugated polymers consisting of different oligothiophene (OTh) coupled to electron‐accepting moiety 2‐pyran‐4‐ylidenemalononitrile (PM)‐based unit were synthesized by Stille or Suzuki coupling polymerization. The combination of electron‐accepting PM building block with varied OThn (the number of thiophene unit increases from 3 to 5) results in enhanced π–π stacking in solid state and intramolecular charge transfer (ICT) transition, which lead to an extension of the absorption spectra of the copolymers. Cyclic voltammetry measurements and molecular orbital distribution calculations indicate that the highest occupied molecular orbitals (HOMO) energy levels could be fine‐tuned by changing the number of thiophene units of the copolymers, and the resulting copolymers possessed relatively low HOMO energy levels promising good air stability and high‐open circuit voltage (Voc) for photovoltaic application. Bulk heterojunction photovoltaic devices were fabricated by using the copolymers as donors and (6,6)‐phenyl C61‐butyric acid methyl ester as acceptor. It was found that the highest Voc reached 0.94 V, and the short circuit currents (Jsc) were improved from 1.78 to 2.54 mA/cm2, though the power conversion efficiencies of the devices were measured between 0.61 and 0.99% under simulated AM 1.5 solar irradiation of 100 mW/cm2, which indicated that this series copolymers can be promising candidates for the photovoltaic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2765–2776, 2010  相似文献   

7.
A new methodology is successfully used for the concurrent synthesis of three different copolymers; diblock, triblock, and three‐armed star‐block copolymers of styrene and isoprene via the living anionic polymerization with control over the molecular weight and weight fractions of each block. The room temperature polymerization process has resulted in the well defined linear and radial block copolymers, when the living di‐block of poly(styrene‐b‐isoprene) was coupled using cheap and readily available malonyl chloride as a novel coupling agent giving nearly 100% yield. The resulting block copolymers have narrow polydispersity index (PDI = 1.01–1.09) with a good agreement between the calculated and the observed molecular weights. The results are further supported by fractionation of the block copolymers by reversed‐phase temperature gradient interaction chromatography (RP‐TGIC) technique followed by size exclusion chromatography (SEC). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2636–2641, 2010  相似文献   

8.
Three new vinyl ether monomers containing phosphonate moieties were synthesized from transetherification reaction. We showed that the yield was dependent on the spacer length between the vinyl oxy group and the phosphonate moieties: when the spacer is a single methylene side reaction may occur, leading to the formation of acetal compounds. Free‐radical copolymerizations of phosphonate‐containing vinyl ether monomers with maleic anhydride were carried out, leading to alternated copolymers of rather low molecular weights (from 1000 to 7000 g/mol). Both gel permeation chromatography and 31P NMR analyses enhanced possible intramolecular transfer reactions occurring from the phosphonate moieties. Kinetic investigation showed that the electron‐withdrawing character of the phosphonate moieties tends to decrease the rate of copolymerization. Nevertheless, almost complete monomers conversion was reached after 30 min of reaction with dimethyl vinyloxyethylphosphonate (VEC2PMe). Then, radical copolymerization of VEC2PMe with a series of electron‐accepting monomers, that is, dibutyl maleate, dibutylitaconate, itaconic anhydride, butyl maleimide, and methyl maleimide, led to a series of alternated copolymers. From kinetic investigation, we showed that the higher the electron‐accepting effect, the faster the vinyl ether consumption and the higher the molecular weights. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The synthesis by oxidative polymerization of well‐defined poly(3,4‐ethylenedioxythiophene) (PEDOT) nano‐objects in the presence of modified and unmodified poly(N‐vinylpyrrolidone)‐based copolymers used as stabilizers in aqueous media is reported. Ammonium persulfate or a mixture of ammonium persulfate with CuCl2 or CuBr2 was used as oxidants. The effects of several parameters such as the molar mass and the concentration of the stabilizer as well as the nature of the oxidants on the size, morphology, and the conductivity of the PEDOT particles have been investigated. The distribution of the reactive moieties along the copolymer stabilizer backbone was shown to be crucial to get well‐defined PEDOT nano‐objects. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3841–3855, 2010  相似文献   

10.
Novel copolymers composed of a styrene (St) derivative bearing a vicinal tricarbonyl moiety and various vinyl monomers such as St, methyl methacrylate (MMA), and N‐vinylpyrrolidone (NVP) were synthesized by (1) radical copolymerization of a St derivative with a 1,3‐diketone structure with St, MMA, and NVP and (2) successive oxidation of the resulting copolymers with N‐bromosuccinimide in DMSO to convert their 1,3‐diketone moieties in the side chains into the corresponding vicinal tricarbonyl moieties. Their tricarbonyl moieties were readily hydrated in water‐containing acetone to generate the corresponding copolymers bearing geminal diol structures in the side chains. On the other hand, heating the resulting copolymers bearing the geminal diol structures in vacuo‐enabled successful recovery of the vicinal tricarbonyl moieties to demonstrate the reversible nature of this system. The hydration behavior in powdery state under air atmosphere saturated by water was also investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

12.
Three classes of quinoxaline (Qx)‐based donor–acceptor (D–A)‐type copolymers, poly[thiophene‐2,5‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diyl] P(T‐Qx), poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diy} P(BDT‐Qx), and poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5′,8′‐di‐2‐thienyl‐2,3‐bis(4‐octyloxyl)phenyl)‐quinoxaline‐5,5‐diyl} P(BDT‐DTQx), were synthesized via a Stille coupling reaction. The Qx unit was functionalized at the 2‐ and 3‐positions with 4‐(octyloxy)phenyl to provide good solubility and to reduce the steric hindrance. The absorption spectra of the Qx‐containing copolymers could be tuned by incorporating three different electron‐donating moieties. Among these, P(T‐Qx) acted as an electron donor and yielded a high‐performance solar cell by assuming a rigid planar structure, confirmed by differential scanning calorimetry, UV–vis spectrophotometer, and density functional theory study. In contrast, the P(BDT‐Qx)‐based solar cell displayed a lower power conversion efficiency (PCE) with a large torsional angle (34.7°) between the BDT and Qx units. The BDT unit in the P(BDT‐DTQx) backbone acted as a linker and interfered with the formation of charge complexes or quinoidal electronic conformations in a polymer chain. The PCEs of the polymer solar cells based on these copolymers, in combination with [6,6]‐phenyl C70 butyric acid methyl ester (PC71BM), were 3.3% [P(T‐Qx)], 1.9% [P(BDT‐Qx)], and 2.3% [P(BDT‐DTQx)], respectively, under AM 1.5G illumination (100 mW cm?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Donor–acceptor (D–A) conjugated copolymers are one of known classes of organic optoelectronic materials and have been well developed. However, less attention has been paid on acceptor–acceptor (A–A) conjugated analogs. In this work, two types of A–A conjugated copolymers, namely P1‐Cn and P2‐Cn (n is the carbon number of their alkyl side chains), were designed and synthesized based on perylenediimide ( PDI ) and 2,1,3‐benzothiadiazole ( BT ). Different from P1‐Cn , P2‐Cn polymers have additional acetylene π‐spacers between PDI and BT and thus hold a more planar backbone configuration. Property studies revealed that P2‐Cn polymers possess a much red‐extended UV–vis absorption spectrum, stronger π–π interchain interactions, and one‐order larger electron mobility in their neat film state than P1‐Cn . However, all‐polymer solar cells using P1‐Cn as acceptor component and poly(3‐hexyl thiophene) or poly(2,7‐(9,9‐didodecyl‐fluoene)‐alt?5,5′‐(4,7‐dithienyl‐2‐yl‐2,1,3‐benzothiadiazole) as donor component exhibited much better performance than those based on P2‐Cn . Apart from their backbone chemical structure, the side chains were found to have little influence on the photophysical, electrochemical, and photovoltaic properties for both P1‐Cn and P2‐Cn polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1200–1215  相似文献   

14.
Three novel low‐bandgap copolymers containing alkylated 4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole (HBT) and different electron‐rich functional groups (dialkylfluorene (PFV‐HBT), dialkyloxyphenylene (PPV‐HBT) and dialkylthiophene (PTV‐HBT)) were prepared by Horner polycondensation reactions and characterized by 1H NMR, gel permeation chromatography, and elemental analysis. The alkyl side chain brings these polymeric materials good solubility in common organic solvents, which is critical for the manufacture of solar cells in a cost‐effective manner. The copolymers exhibit low optical bandgap from 1.48 to 1.83 eV. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the copolymers were measured by cyclic voltammetry. Theoretical calculations revealed that the variation laws of HOMO and the LUMO energy levels are well consistent with cyclic voltammetry measurement. The bulk heterojunction photovoltaic devices with the structure of ITO/PEDOT‐PSS/polymer:PCBM/LiF/Al were fabricated by using the three copolymers as the donor and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM) as the acceptor in the active layer. The device based on PTV‐HBT:PCBM (1:4 w/w) achieved a power conversion efficiency of 1.05% under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

15.
We have synthesized two cyclopentadithiophene (CDT)‐based low bandgap copolymers, poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(benzo[c][1,2,5]selenadiazole‐4,7‐diyl)] (PCBSe) and poly[(4,4‐bis(2‐ethyl‐hexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl)‐alt‐(4,7‐dithiophen‐2‐yl‐benzo[c][1,2,5]selenadiazole‐5,5′‐diyl)] (PCT2BSe), for use in photovoltaic applications. Through the internal charge transfer interaction between the electron‐donating CDT unit and the electron‐accepting benzoselenadiazole, we realized exceedingly low bandgap polymers with bandgaps of 1.37–1.46 eV. The UV–vis absorption maxima of PCT2BSe were subjected to larger hypsochromic shifts than those of PCBSe, because of the distorted electron donor–acceptor (D–A) structures of the PCT2BSe backbone. These results were supported by the calculations of the D–A complex using the ab initio Hartree‐Fock method with a split‐valence 6‐31G* basis set. However, PCT2BSe exhibited a better molar absorption coefficient in the visible region, which can lead to more efficient absorption of sunlight. As a result, PCT2BSe blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) exhibited a better photovoltaic performance than PCBSe because of the larger spectral overlap integral with respect to the solar spectrum. Furthermore, when the polymers were blended with PC71BM, PCT2BSe showed the best performance, with an open circuit voltage of 0.55 V, a short‐circuit current of 6.63 mA/cm2, and a power conversion efficiency of 1.34% under air mass 1.5 global illumination conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1423–1432, 2010  相似文献   

16.
We have synthesized a narrow‐bandgap conjugated polymer ( PCTDPP ) containing alternating cyclopentadithiophene (CT) and diketo‐pyrrolo‐pyrrole (DPP) units by Suzuki coupling. This PCTDPP exhibits a low band gap of 1.31 eV and a broad absorption band from 350 to 1000 nm, which allows it to absorb more available photons from sunlight. A bulk heterojunction polymer solar cell incorporating PCTDPP and C70 at a blend ratio of 1:3 exhibited a high short‐circuit current of 10.87 mA/cm2 and a power conversion efficiency of 2.27%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1669–1675, 2010  相似文献   

17.
A–B–A stereoblock polymers with atactic poly(N‐isopropylacrylamide) (PNIPAM) as a hydrophilic block (either A or B) and a non‐water‐soluble block consisting of isotactic PNIPAM were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerizations. Yttrium trifluoromethanesulfonate was used in the tacticity control, and bifunctional S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDAT) was utilized as a RAFT agent. Chain structures of the A–B–A stereoblock copolymers were determined using 1H NMR, SEC, and MALDI‐TOF mass spectrometry. BDAT proved to be an efficient RAFT agent in the controlled synthesis of stereoregular PNIPAM, and both atactic and isotactic PNIPAM were successfully used as macro RAFT agents. The glass transition temperatures (Tg) of the resulting polymers were measured by differential scanning calorimetry. We found that the Tg of isotactic PNIPAM is molecular weight dependent and varies in the present case between 115 and 158 °C. Stereoblock copolymers show only one Tg, indicating the miscibility of the blocks. Correspondingly, the Tg may be varied by varying the mutual lengths of the A and B blocks. The phase separation of aqueous solutions upon increasing temperature is strongly affected by the isotactic blocks. At a fixed concentration (5 mg/mL), an increase of the isotacticity of the stereoblock copolymers decreases the demixing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 38–46, 2008  相似文献   

18.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A series of light‐emitting poly(p‐phenylene vinylene)s with triphenylamine units as hole‐transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass‐transition temperature (83–155 °C) and high decomposition temperature (>300 °C) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight‐average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminescence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6–0.75 V) suggested that the alternating copolymers possessed a good hole‐transporting property due to the incorporation of triphenylamine moieties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3278–3286, 2001  相似文献   

20.
Two new quinoxaline‐based polymers, poly[1,5‐didecyloxynaphthalene‐alt‐5,5′‐(5,8‐dithiophen‐2‐yl)‐2,3‐bis(4‐octyloxyphenyl)quinoxaline (PNQx‐p) and poly[1,5‐didecyloxynaphthalene‐alt‐5,5′‐(5,8‐dithiophen‐2‐yl)‐2,3‐bis(3‐octyloxyphenyl)quinoxaline (PNQx‐m), were synthesized by Suzuki coupling reaction and characterized. Thermogravimetric analysis revealed that these polymers are thermally stable with degradation temperature up to 320 °C. As evident from the electrochemical and optical studies, the copolymers have comparable optical band gap (~2 eV) and nearly similar deep highest occupied molecular orbital (HOMO) energy levels of ?5.59 (PNQx‐p) and ?5.61 eV (PNQx‐p). The resulting copolymers possessed relatively low HOMO energy levels promising good air stability and high open circuit voltage (Voc) for photovoltaic applications. The optimized photovoltaic device with a structure of ITO/PEDOT:PSS/PNQx‐m:PC71BM (1:2, w/w)/LiF/Al shows a power conversion efficiency up to 2.29% with a short circuit current density of 5.61 mA/cm2, an Voc of 0.93 V and a fill factor of 43.73% under an illumination of AM 1.5, 100 mW/cm2. The efficiency of the PNQx‐m polymer improved from 2.29 to 2.95% using 1,8‐diiodoocane as an additive (0.25%). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号