首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
In this study, single electron transfer‐living radical polymerization (SET–LRP) of N‐isopropylacrylamide (NIPAM) in the presence of 2‐mercaptoethylamine chain transfer agent (CTA) was carried out by Cu(0) generated in situ from the disproportionation of CuBr/2,2′‐bipyridine (2,2′‐bpy) in N,N‐dimethylformamide (DMF) at 90 °C. Analysis of polymerization kinetics in the presence of CTA showed that the premature termination of growing polymer chains leads to retardation. The apparent rate constant of polymerization (k) decreased from 4.49 × 10?4 to 2.59 × 10?4 min?1 with increasing CTA concentration. The initiator efficiency (Ieff) and the chain transfer constant (Cs) were found to be 0.524 and 0.286, respectively. The molecular weights of poly(N‐isopropylacrylamide) [poly(NIPAM)] produced were significantly higher than the predicted values, and the polydispersities were less than 1.22. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The development of Cu(0)/TREN/CuBr2‐catalyzed SET‐LRP of VC initiated with CHBr3 in DMSO at 25 °C is reported. The use of CuBr2 additive allows for the first LRP of low molecular weight VC (target DP = 100), as well as lower Cu powder loading levels, improved Ieff and control in the synthesis of higher molecular VC, targeted degree of polymerization = 350, 700, 1,000, 1,400. 1H NMR and HSQC confirm the bifunctionality of CHBr3 as an initiator and suggest that deleterious side‐reactions such as the formation of allylic chlorides occur primarily at the onset of the reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4130–4140, 2009  相似文献   

3.
The single‐electron transfer living radical polymerization (SET‐LRP) method in the presence of chain transfer agent was used to synthesize poly(N‐isopropylacrylamide) [poly(NIPAM)] with a low molecular weight and a low polydispersity index. This was achieved using Cu(I)/2,2′‐bipyridine as the catalyst, 2‐bromopropionyl bromide as the initiator, 2‐mercaptoethanol as the chain transfer agent (TH), and N,N‐dimethylformamide (DMF) as the solvent at 90 °C. The copper nanoparticles with diameters of 16 ± 3 nm were obtained in situ by the disproportionation of Cu(I) to Cu(0) and Cu(II) species in DMF at 22 °C for 24 h. The molecular weights of poly(NIPAM) produced were significantly higher than the theoretical values, and the polydispersities were less than 1.18. The chain transfer constant (Ctr) was found to be 0.051. Although the kinetic analysis of SET‐LRP in the presence of TH corroborated the characteristics of controlled/living polymerization with pseudo‐first‐order kinetic behavior, the polymerization also exhibited a retardation period (k > ktr). The influence of molecular weight on lower critical solution temperature (LCST) was investigated by refractometry. Our experimental results explicitly elucidate that the LCST values increase slightly with decreasing molecular weight. Reversibility of solubility and collapse in response to temperature well correlated with increased molecular weight of poly(NIPAM). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

6.
The single electron transfer‐living radical polymerization of methyl acrylate (MA) initiated by bis(2‐bromopropionyl)ethane (BPE) in dimethyl sulfoxide was carried out to 100% monomer conversion and complete absence of bimolecular termination under the following reaction conditions: [MA]/[BPE]/[Me6‐TREN]/[CuBr2] = 60/1/0.21/0.01 and [MA]/[BPE]/[TREN]/[CuBr2] = 60/1/0.25/0.05. These polymerizations were mediated by 0.5 cm of hydrazine‐activated Cu(0) wire of 20 gauge (0.812 cm in diameter), corresponding to a surface area of 0.14 cm2 of Cu(0) per 3 mL reaction volume (2/1 v/v monomer/solvent). A higher extent of bimolecular termination (5–13%) was observed at complete conversion when longer lengths of Cu(0) wire were used. In the absence of CuBr2 the activated Cu(0) wire/Me6‐TREN catalyst in dimethyl sulfoxide also allowed the synthesis of perfectly bifunctional and monofunctional PMAs at complete conversion. This was also demonstrated by the quantitative reinitiation experiments from the chain(s) end(s) of these macroinitiators. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201  相似文献   

8.
The single‐electron transfer living radical polymerization (SET‐LRP) of water‐soluble monomers, N,N‐dimethylacrylamide (DMA) and N‐isopropylacrylamide (NIPAM), initiated with 2‐methylchloropropionate (MCP) in dipolar aprotic and protic solvents is reported. The radical polymerization of acrylamides is characterized by higher rate constants of propagation and bimolecular termination than acrylates. Therefore, the addition of CuCl2 is required to mediate deactivation in the early stages of the reaction. Through the use of Cu(0)‐wire/Me6‐TREN catalysis, conditions were optimized to minimize the amount of externally added CuCl2 required to maintain a linear evolution of molecular weight and narrow molecular weight distribution. By using less CuCl2 additive, the amount of soluble copper species that must ultimately be removed from the reaction mixture is reduced. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1752–1763, 2010  相似文献   

9.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

10.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

11.
Single‐electron transfer living radical polymerization (SET‐LRP) has developed as a reliable, robust and straight forward method for the construction well‐defined polymers. To span an even larger variety of functional monomers, we investigated the copolymerization of methyl methacrylate with methacrylic acid by SET‐LRP. Copolymerizations were catalyzed by Cu(0)/Me6‐TREN and performed in MeOH/H2O mixtures at 50 °C. The SET‐LRP copolymerizations of varying methacrylic acid content were evaluated by kinetic experiments. At low (2.5%) and moderate (10%) MAA loadings, the copolymerizations obeyed perfect first order kinetics (kpapp = 0.008 min?1 and kpapp = 0.006 min?1) and exhibited a linear increase in molecular weights with conversion providing narrow molecular weight distributions. The SET‐LRP of MMA/25%‐MAA was found to be significantly slower (kpapp = 0.0035 min?1). However, a reasonable first‐order kinetics in monomer consumption was maintained, and the control of the polymerization process was preserved since the molecular weight increased linearly with conversion and could therefore be adjusted. This work demonstrates that the copolymerization of methacrylic acid by SET‐LRP is feasible and the design of well‐defined macromolecules comprising acidic functionality can be achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

13.
In this work, bimetallic zero‐valent metal (Fe(0) powder and Cu(0) powder) was used to mediate the single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate at 25 °C in dimethyl sulfoxide. Different feed ratios of [Fe(0)]0/[Cu(0)]0 (0/1.5, 0.5/1, 0.75/0.75, 1/0.5, and 1.3/0.2) were explored. With the increase of Fe(0) feed, the polymerization rate was mildly depressed with a prolonged induction period. While, the control over the molecular weights was improved upon the increase of Fe(0). A best control (initiation efficiency = 91%) was achieved at [Fe(0)]0/[Cu(0)]0 = 1/0.5. A further increase of Fe(0) to the feed ratio of [Fe(0)]0:[Cu(0)]0 = 1.3: 0.2 led to a uncontrolled polymerization. Explorations of available solvents and ligands for this polymerization confirmed the SET‐LRP mechanism. It was suggested that Fe(0) might act as a dual role in this process: one was the activation agent for Cu(0), which favored a better control over the molecular weights; The other was an alternative catalyst for the activation of R‐X or Pn‐X to generate radicals, which assured a comparable polymerization rate as that of Cu(0). This work provided an alternative and economical catalyst for SET‐LRP, and would eventually reinforce the SET‐LRP technique. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
A well‐defined amphiphilic graft copolymer, poly(6‐methyl‐1,2‐heptadien‐4‐ol)‐g‐poly(2‐(dimethylamino)ethyl methacrylate) (PMHDO‐g‐PDMAEMA), has been synthesized by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. PMHDO backbone containing double bonds and pendant hydroxyls was first prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol (MHDO) followed by treating the pendant hydroxyls with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. SET‐LRP of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) was performed in THF/H2O using PMHDO‐Cl as macroinitiator and CuCl/Me6TREN as catalytic system to afford the well‐defined PMHDO‐g‐PDMAEMA graft copolymer with a narrow molecular weight distribution (Mw/Mn = 1.28). The grafting density was as high as 92%. The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the micellar morphology was preliminarily explored by transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

18.
Cu(I)Br/Me6‐TREN species are unstable and disproportionate into metallic Cu(0) and Cu(II)Br2/Me6‐TREN in DMSO, whereas in toluene are stable and do not undergo disproportionation, at least at 25 °C. To estimate the role of the disproportionating solvent in single electron‐transfer living radical polymerization (SET‐LRP) a comparative analysis of Cu(0)/Me6‐TREN‐catalyzed polymerization of MA initiated with methyl 2‐bromopropionate at 25 °C was performed in DMSO and toluene. A combination of kinetic experiments and chain end analysis by 500‐MHz 1H NMR spectroscopy was used to demonstrate that disproportionation represents the crucial requirement for a successful SET‐LRP of MA at 25 °C. In DMSO a perfect SET‐LRP occurs and yields close to 100% conversion in 45 min. A first order polymerization in growing species up to 100% conversion and a PMA with perfectly functional chain ends are obtained. However, in toluene within 17 h only about 60% conversion is obtained, the polymerization does not show first order in growing species and therefore is not a living polymerization. Moreover, at 60% conversion the resulting PMA has only 80% active chain ends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6880–6895, 2008  相似文献   

19.
A well‐defined amphiphilic graft copolymer, consisting of hydrophobic polyallene‐based backbone and hydrophilic poly(N‐isopropylacrylamide) (PNIPAM) side chains, was prepared by the combination of living coordination polymerization, single electron transfer‐living radical polymerization (SET‐LRP), and the grafting‐from strategy. First, the double‐bond‐containing backbone was prepared by [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). Next, the pendant hydroxyls in every repeating unit of poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer were treated with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, PNIPAM side chains were grown from PMHDO backbone via SET‐LRP of N‐isopropylacrylamide initiated by PMHDO‐Cl macroinitiator in N,N‐dimethylformamide/2‐propanol using copper(I) chloride/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford PMHDO‐g‐PNIPAM graft copolymers with a narrow molecular weight distribution (Mw/Mn = 1.19). The critical micelle concentration (cmc) in water was determined by fluorescence probe technique and the effects of pH and salinity on the cmc of PMHDO‐g‐PNIPAM were also investigated. The micellar morphology was found to be spheres using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号