首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N,N‐Dimethylacrylamide (DMA) and N,N‐diethylacrylamide (DEA) were polymerized with various Grignard reagents in tetrahydrofuran at −78 °C in the presence of diethylzinc (Et2Zn). Highly isotactic poly(DEA) was produced in quantitative yield with tert‐butylmagnesium bromide and Et2Zn, whereas atactic poly(DEA) was generated in the absence of Et2Zn. No stereospecific polymerization of DMA proceeded with Grignard reagent in the presence of Et2Zn. The highly isotactic poly(DEA) obtained was soluble in water and showed the characteristic coil–globule transition phenomenon. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4677–4685, 2000  相似文献   

2.
Polymerization of diethyl vinylphosphonate (DEVP) is achieved by using lanthanide tris(borohydride) complexes, Ln(BH4)3(THF)3 (Ln = Y, La, Nd, Sm, Gd, Dy, Lu) as an initiator. The characteristics and mechanism of polymerization as well as the properties of the resulting poly(diethyl vinylphophonate)s (PDEVPs) are studied. The effects of the lanthanide elements, the molar ratios of monomer to initiator ([M]/[ln]), reaction temperature and time on polymerization have been investigated in detail. The optimized polymerization conditions are 40 °C, 1 h in bulk with [M]/[ln] = 300. The kinetic study indicates that the polymerization of DEVP undergoes a controlled manner as the molecular weights (MWs) of PDEVPs increase with monomer conversion linearly maintaining moderate MW distribution (1.7–1.9). Additionally, a coordination anionic polymerization mechanism is proved by end‐group analysis with ESI mass and 1H NMR spectroscopy. The obtained PDEVPs have low glass transition temperature (Tg = ?62 °C) and high thermal decomposition temperature (Td > 300 °C) determined by differential scanning calorimetry and thermogravimetric analysis respectively. The thermosensitive behavior of PDEVP is characterized by evaluating the lower critical solution temperature of PDEVP in water by ultraviolet transmittance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2409–2415  相似文献   

3.
Poly{2‐(N,N‐dimethylamino)ethyl methacrylate [poly(DMMA)]}, which was prepared by radical polymerization initiated with dimethyl 2,2‐azobis(2‐methylpropionate), was reacted with hydrogen peroxide, diethyl sulfate, and chloroacetic acid to yield poly[N,N‐dimethyl‐N‐(2‐methacryloyloxyethyl)amine N‐oxide] [poly(DMANO)], poly[N‐ethyl‐N,N‐dimethyl‐N‐(2‐methacryloyloxyethyl)ammonium ethyl sulfate] [poly(EDMES)], and poly[N,N‐dimethyl‐N‐(2‐methacryloyloxy)ethylammonioacetate] [poly(DMEAA)] as ion‐containing water‐soluble polymers, respectively. The solution properties of these charged polymers were compared via the reduced viscosities of these three charged polymers in aqueous solutions as a function of the concentration. Poly(EDMES) showed typical polyelectrolyte behavior, and the other two polymers [poly(DMANO) and poly(DMEAA)] exhibited antipolyelectrolyte behavior. Furthermore, the antipolyelectrolyte behavior was different for poly(DMANO) and poly(DMEAA); that is, poly(DMANO) was less dependent on small electrolytes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 129–141, 2005  相似文献   

4.
The radical polymerization of an optically active methacrylamide, N‐[(R)‐α‐methoxycarbonylbenzyl]methacrylamide, was carried out in the absence and presence of Lewis acids such as yittribium trifluoromethanesulfonate [Yb(OTf)3] and scandium trifluoromethanesulfonate [Sc(OTf)3]. Catalytic amounts of the Lewis acids significantly affected the stereoregularity of the obtained polymers. The polymerization with Yb(OTf)3 in tetrahydrofuran afforded isotactic polymers (up to mm = 87%), whereas the conventional radical method without the Lewis acid produced polymers rich in syndiotacticity (up to rr = 88%). The radical polymerization in the presence of MgBr2 proceeded in a heterotactic‐selective manner (mr = 63%). Thus, the isotactic, syndiotactic, and heterotactic poly(methacrylamide)s were synthesized by the radical processes. The chiral recognition abilities of the obtained optically active poly(methacrylamide)s were affected by the stereoregularity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3354–3360, 2003  相似文献   

5.
We demonstrate a facile, yet efficient method for the functionalization of crosslinked polystyrene (PS) microspheres with biocompatible poly(vinylphosphonate)s via the combination of a UV grafting polymerization and a surface‐initiated group transfer polymerization. Self‐initiated photografting and photopolymerization of ethylene glycol dimethacrylate results in direct photografting of poly(ethylene glycol dimethacrylate) on the PS microspheres with dangling methacrylate functionalities, which are used to immobilize ytterbocene complexes to form the surface‐bound rare‐earth metal catalyst system. The surface‐initiated GTP of dialkyl vinylphosphonates from the initiator system leads to the functionalization of PS microspheres with poly(vinylphosphonate) brushes. Polymerization kinetic investigation indicates that surface‐initiated GTP leads to a constant and remarkably rapid weight gain of the microsphere (a microsphere weight increase of 600% within 3 min), owing to the highly living and efficient character of GTP. The surface‐initiated GTP occurring inside the microsphere causes an accumulation of the tension between the polymer chains in the microsphere, which eventually induces fracture of the microsphere for longer polymerization time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2919–2925  相似文献   

6.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

7.
Anionic polymerization of N‐methoxymethyl‐N‐isopropylacrylamide ( 1 ) was carried out with 1,1‐diphenyl‐3‐methylpentyllithium and diphenylmethyllithium, ‐potassium, and ‐cesium in THF at ?78 °C for 2 h in the presence of Et2Zn. The poly( 1 )s were quantitatively obtained and possessed the predicted molecular weights based on the feed molar ratios between monomer to initiators and narrow molecular weight distributions (Mw/Mn = 1.1). The living character of propagating carbanion of poly( 1 ) either at 0 or ?78 °C was confirmed by the quantitative efficiency of the sequential block copolymerization using N,N‐diethylacrylamide as a second monomer. The methoxymethyl group of the resulting poly( 1 ) was completely removed to give a well‐defined poly(N‐isopropylacrylamide), poly(NIPAM), via the acidic hydrolysis. The racemo diad contents in the poly(NIPAM)s could be widely changed from 15 to 83% by choosing the initiator systems for 1 . The poly(NIPAM)s obtained with Li+/Et2Zn initiator system possessed syndiotactic‐rich configurations (r = 75–83%), while either atactic (r = 50%) or isotactic poly(NIPAM) (r = 15–22%) was generated with K+/Et2Zn or Li+/LiCl initiator system, respectively. Atactic and syndiotactic poly(NIPAM)s (42 < r < 83%) were water‐soluble, whereas isotactic‐rich one (r < 31%) was insoluble in water. The cloud points of the aqueous solution of poly(NIPAM)s increased from 32 to 37 °C with the r‐contents. These indicated the significant effect of stereoregularity of the poly(NIPAM) on the water‐solubility and the cloud point in water © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4832–4845, 2006  相似文献   

8.
A–B–A stereoblock polymers with atactic poly(N‐isopropylacrylamide) (PNIPAM) as a hydrophilic block (either A or B) and a non‐water‐soluble block consisting of isotactic PNIPAM were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerizations. Yttrium trifluoromethanesulfonate was used in the tacticity control, and bifunctional S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDAT) was utilized as a RAFT agent. Chain structures of the A–B–A stereoblock copolymers were determined using 1H NMR, SEC, and MALDI‐TOF mass spectrometry. BDAT proved to be an efficient RAFT agent in the controlled synthesis of stereoregular PNIPAM, and both atactic and isotactic PNIPAM were successfully used as macro RAFT agents. The glass transition temperatures (Tg) of the resulting polymers were measured by differential scanning calorimetry. We found that the Tg of isotactic PNIPAM is molecular weight dependent and varies in the present case between 115 and 158 °C. Stereoblock copolymers show only one Tg, indicating the miscibility of the blocks. Correspondingly, the Tg may be varied by varying the mutual lengths of the A and B blocks. The phase separation of aqueous solutions upon increasing temperature is strongly affected by the isotactic blocks. At a fixed concentration (5 mg/mL), an increase of the isotacticity of the stereoblock copolymers decreases the demixing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 38–46, 2008  相似文献   

9.
Well‐defined multiarm star block copolymers poly(glycidol)‐b‐poly(methyl methacrylate) (PGOHBr‐b‐PMMAx) with an average number of PMMA arms of 85, 55, and 45 have been prepared. The core‐first approach has been selected as the methodology using atom transfer radical polymerization (ATRP) of MMA from an activated hyperbranched poly(glycidol) as the core. These activated hyperbranched macroinitiators were prepared by esterification of hyperbranched poly(glycidol) (PGOH) with 2‐bromoisobutyryl bromide. The effect of monomer/initiator ratio, catalyst concentration, time, temperature, and solvent on the growing of the arms has been studied in detail in order to optimize the process and to diminish the radical‐radical coupling. The final products and intermediates were characterized by means of size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) and Fourier transform‐infrared (FTIR) spectroscopy. The length of PMMA arms was determined by SEC after cleavage of ester bond linked to PGOH core. Glass transition temperature (Tg), thermal stability and rheological properties of the multiarm star copolymers were also studied. Finally, tapping mode atomic force microscopy (TMAFM) allowed the clear visualization of nano‐sized particles (80–200 nm) corresponding to individual star molecules. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010  相似文献   

11.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Radical polymerization of lactic acid‐based chiral and achiral methylene dioxolanones, a model for conformationally s‐cis locked acrylate, was carried out with AIBN to demonstrate an isospecific free radical polymerization controlled by chirality and conformation of monomer. Polymerization of the dioxolanones proceeded smoothly without ring opening to give a polymer with moderate molecular weight and 100% of maximum isotacticity. ESR spectrum indicated a twisted conformation of the growing poly(methylene dioxolanone) radical in contrast to an acyclic analogous radical, suggesting a restriction of the free rotation around main chain Cα? Cβ bond of the growing radical center. Chirality as well as the polarity and bulkiness of monomer affected the polymer tacticity, and chiral alkyl substituent would afford a high isotactic polymer, in which higher the enantiomeric excess of the monomer was, higher the isotacticity of the polymer was. While, achiral or polar substituents including dibenzyl and trichloromethyl groups would afford an atactic polymer. In addition, glass transition temperature (Tg) of the resulting polymers was significantly high, ranging from 172.2 to 229.8 °C, and even for an isotactic polymer Tg was as high as 206.8 °C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2007–2016  相似文献   

13.
A group of new amphiphilic poly(phenylacetylene)s bearing polar oligo(ethylene oxide) pendants, poly{4‐[2‐(2‐hydroxyethoxy)ethoxy]phenylacetylene} ( 1 ), poly(4‐{2‐[2‐(2‐hydroxyethoxy)‐ethoxy]ethoxy}phenylacetylene) ( 2p ), poly(3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 2m ), poly(4‐{2‐[2‐(2‐methanesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 3 ), poly(4‐{2‐[2‐(p‐toluenesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 4 ), poly(4‐{2‐[2‐(2‐trimethylsilyloxy‐ethoxy)ethoxy] ethoxy}phenylacetylene) ( 5 ), and poly(4‐{2‐[2‐(2‐chloroethoxy)ethoxy]ethoxy}phenylacetylene) ( 6 ), were synthesized with organorhodium complexes as the polymerization catalysts. The structures and properties of the polymers were characterized with IR, UV, NMR, and thermogravimetric analysis. 1 , 2p , and 2m , the three polymers containing pendants with hydroxyl groups, were oligomeric or insoluble. The organorhodium complexes worked well for the polymerization of the monomers without hydroxyl groups, giving soluble polymers 3 – 6 with a weight‐average molecular weight up to ~160 × 103 and a yield up to 99%. Z‐rich polymers 3 – 6 could be prepared by judicious selections of the catalyst under optimal conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1153–1167, 2006  相似文献   

14.
The radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures was investigated in the presence of triisopropyl phosphate (TiPP). The addition of TiPP induced a syndiotactic specificity that was enhanced by the polymerization temperature being lowered, whereas atactic polymers were obtained in the absence of TiPP, regardless of the temperature. Syndiotactic‐rich poly(NIPAAm) with a racemo dyad content of 65% was obtained at ?60 °C with a fourfold amount of TiPP, but almost atactic poly(NIPAAm)s were obtained by the temperature being lowered to ?80 °C. This result contrasted with the result in the presence of primary alkyl phosphates, such as tri‐n‐propyl phosphate: the stereospecificity varied from syndiotactic to isotactic as the polymerization temperature was lowered. NMR analysis at ?80 °C revealed that TiPP predominantly formed a 1:1 complex with NIPAAm, although primary alkyl phosphates preferentially formed a 1:2 complex with NIPAAm. Thus, it was concluded that a slight increase in the bulkiness of the added phosphates influenced the stoichiometry of the NIPAAm–phosphate complex at lower temperatures, and consequently a drastic change in the effect on the stereospecificity of NIPAAm polymerization was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3899–3908, 2005  相似文献   

15.
Triblock copolymer poly(ethylene glycol)‐poly(alkylene phosphate)‐poly(ethylene glycol) was prepared by first reacting hexamethylene glycol with dimethyl‐H‐phosphonate at conditions of transesterification and then replacing the CH3OP(O)(H)O‐… end‐groups by monomethyl ether of poly(ethylene glycol). The course of reaction was studied by 31P NMR indicating complete conversion. After oxidation the poly(alkylene H‐phosphonate was converted into the final triblock polyphosphate. This triblock copolymer was used as a modifier of CaCO3 crystallization. Unusual semi open empty spheres resulted, composed of small crystallites of the size (diameter) equal to 40–90 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 650–657, 2005  相似文献   

16.
Well‐defined poly(m‐phenylene) (PMP), which is poly(1,3‐dibutoxy‐m‐phenylene), was successfully synthesized via Grignard metathesis polymerization. PMP with a reasonably high number‐average molecular weight (Mn) of 25,900 and a very low polydispersity index of 1.07 was obtained. The polymerization of a Grignard reagent monomer, 1‐bromo‐2,4‐dibutoxy‐5‐chloromagnesiobenzene, proceeded in a chain‐growth manner, probably due to the meta‐substituted design producing a short distance between the MgCl and Br groups and thereby making a smooth nickel species (? C? Ni? C? ) transfer to the intramolecular chain end (? C? Ni? Br) over a benzene ring. PMP showed a good solubility in the common organic solvents, such as tetrahydrofuran, CH2Cl2, and CHCl3. Furthermore, a new block copolymer comprised of PMP and poly(3‐hexylthiophene) was also prepared. The tapping mode atomic force microscopy image of the surface of the block copolymer thin film on a mica substrate showed a nanofibril morphology with a clear contrast. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

17.
(E)‐1,3‐Pentadiene (EP) and (E)‐2‐methyl‐1,3‐pentadiene (2MP) were polymerized to cis‐1,4 polymers with homogeneous and heterogeneous neodymium catalysts to examine the influence of the physical state of the catalyst on the polymerization stereoselectivity. Data on the polymerization of (E)‐1,3‐hexadiene (EH) are also reported. EP and EH gave cis‐1,4 isotactic polymers both with the homogeneous and with the heterogeneous system, whereas 2MP gave an isotactic cis‐1,4 polymer with the heterogeneous catalyst and a syndiotactic cis‐1,4 polymer, never reported earlier, with the homogeneous one. For comparison, the results obtained with the soluble CpTiCl3‐based catalyst (Cp = cyclopentadienyl), which gives cis‐1,4 isotactic poly(2MP), are examined. A tentative interpretation is given for the mechanism of the formation of the stereoregular polymers obtained and a complete NMR characterization of the cis‐1,4‐syndiotactic poly(2MP) is reported. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3227–3232  相似文献   

18.
In order to determine the stereoregularity of poly(4-vinylpyridine), 4-vinylpyridine-β,β-d2 was synthesized from 4-acetylpyridine. The 1H-NMR spectra of the deuterated and nondeuterated polymers were measured and analyzed. From the 1H-NMR spectra of poly(4-vinylpyridine-β,β-d2), triad tacticity can be obtained, while the 1H-NMR spectra of nondeuterated poly(4-vinylpyridine) give the fraction of isotactic triad. The 13C-NMR spectra of poly(4-vinylpyridine) were also observed, and the spectra of C4 carbon of polymers were assigned by the pentad tacticities. The fraction of isotactic triad of poly(2-vinylpyridine) and poly(4-vinylpyridine) obtained under various polymerization conditions were determined. The radical polymerization and anionic polymerizations with phenylmagnesium bromide and n-butyllithium as catalysts of 4-vinylpyridine gave atactic polymers.  相似文献   

19.
In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP‐g‐PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base‐catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM‐EDX. A chemical stability study performed with Fenton's reagent (3% H2O2 solution containing 4 ppm of Fe2+) at 70 °C revealed that FEP‐g‐PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)‐grafted membranes (FEP‐g‐PSSA). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 563–569, 2010  相似文献   

20.
Biomass‐derived furfuryl methacrylate (FMA) has been successfully polymerized for the first time by anionic polymerization to produce atactic (at‐), isotactic (it‐), or syndiotactic (st‐) poly(furfuryl methacrylate) (PFMA), depending on initiator structure and reaction conditions. Thermal properties of the PFMA materials are strongly affected by the polymer tacticity. Most notably, while both isotactic and syndiotactic polymers can undergo inter‐ or intrachain crosslinking reactions when heated to 290 °C, there is no evidence for the atactic polymer to perform the same reaction. Furthermore, the PFMA tacticity also greatly affects the amount of stable carbonaceous materials it produces when heated to 650 °C, with st‐PFMA forming the largest amount of such materials (26.9%), as compared to only 5.6% by at‐PFMA. Using the Diels–Alder (DA) “click reaction” between the reactive furfuryl group within the PFMA polymers as the diene equivalent and a bismaleimide as the dienophile, thermoreversible smart polymers have been successfully prepared. Thermoreversibility of the preformed crosslinked polymers has been demonstrated, thanks to the facile retro‐DA reaction upon heating and the DA reaction upon cooling of such self‐healing materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2793–2803  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号