首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biguanidine‐functionalized chitosan was synthesized and combined with palladium nanoparticles to yield a recyclable, environmentally benign, heterogeneous catalytic system for the Suzuki–Miyaura C–C coupling reaction. The catalyst was characterized using various techniques. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes, with phenylboronic acid to give biaryls without any additive or ligand. A reusability test demonstrated that the catalyst was highly efficient even after six runs. Solid‐phase poisoning and leaching tests indicated that the catalyst has a heterogeneous nature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Structurally well‐defined end‐functionalized syndiotactic polystyrene (sPS) can be prepared by conducting a simultaneous selective chain transfer reaction during the syndiospecific polymerization of styrene in the presence of vinylsilanes. The production of vinylsilane end‐capped sPS involves a unique selective chain transfer pathway via the incorporation of a terminal vinylsilane unit at the polymer chain end by 2,1‐insertion. This unusual insertion pattern situates the bulky silyl functional group at a closer β‐position from the active catalyst center, thus deactivating the propagating chain by a steric jam between the vinylsilane end group and the active catalyst. Subsequently, chain releasing by hydrogen addition (in the presence of H2) or by β‐elimination (in the absence of H2) can take place, which leads to the production of end‐functionalized sPS with precise controls of stereoregularity and of the location of functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1690–1698, 2010  相似文献   

3.
A Pd‐catalyzed cross‐coupling of aryl trifluoroborates with arylsulfonyl chlorides has been successfully achieved. This transformation is a new method for the Suzuki–Miyaura‐type reaction of aryl trifluoroborates via the cleavage of C? S bond, thus providing an alternative synthesis of biaryls. The reported cross‐coupling reactions are tolerant to many common functional groups regardless of electron‐donating or electron‐withdrawing nature, making these transformations attractive alternatives to the traditional Suzuki–Miyaura coupling approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The results of a ligandless Pd(OAc)2‐catalyzed Suzuki–Miyaura coupling experiment are presented. It was found that the use of polyethylene glycol phosphonium salts (PEG‐quat) as surfactant resulted in very rapid reactions of aryl halides with phenylboronic acids in pure water. Moreover, aryl chlorides such as 4‐nitrochlorobenezene reacted quantitatively with phenylboronic acid under optimized conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Palladium immobilized on organic–inorganic (silica‐gel) hybrid materials behaves as a very efficient heterogeneous catalyst in the Suzuki–Miyaura coupling reaction. Aryl iodides, bromides, and activated chlorides, coupled with organoboronic acids (Suzuki–Miyaura reaction), smoothly afford the corresponding cross‐coupling products in excellent yields under phosphine‐free and amine‐free reaction conditions in the presence of 3‐aminopropyl functionalized silica‐gel immobilized palladium (silica‐APTS‐Pd) as catalyst. Furthermore, the silica‐supported palladium catalyst could be recovered and recycled by simple filtration of the reaction solution. It could be reused for more than 15 consecutive trials without significant loss of its catalytic activity.  相似文献   

6.
The Suzuki–Miyaura coupling reaction of brominated butyl rubber (BIIR) and/or chlorinated butyl rubber with a mixture of 4‐vinylphenylboronic acid and phenylboronic acid was carried out in THF under various conditions using a di‐μ‐chlorobis [5‐hydroxy‐2‐[1‐(hydroxyimino‐κN)ethyl]phenylκC] palladium(II) dimer, which is a type of cyclopalladated complex, as a catalyst. When BIIR and a small amount (Pd/Br ≈ 1/1000) of complex were used as the substrate and catalyst, respectively, a 4‐vinylphenyl and phenyl group could be introduced to butyl rubber in a high yield. Isomerization of the exo carbon–carbon double bond in BIIR was observed during the coupling reaction to give a cis and trans endo structure. The peroxide curing behavior of the resulting polymer at 170 °C indicated that the polymer could be cured by dicumyl peroxide, and the maximum torque of the resulting material, which reflects the crosslink density, was controllable by the composition of the boronic acids used. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Arylated benzofurans were prepared by regioselective Suzuki–Miyaura cross‐coupling reactions of 2,3‐dibromobenzofuran. The reactions proceeded with very good site‐selectivity in favor of the more electron deficient position 2. The Suzuki–Miyaura reactions of 2,3,5‐tribromobenzofuran also proceeded in favor of position 2.  相似文献   

8.
Azobenzene switches its structure instantaneously by reversible trans‐to‐cis and cis‐to‐trans photoisomerization with light irradiations. Dynamic change in polymer structure is expected via introducing an azobenzene unit into the main chain. In this study, a set of methyl‐substituted azobenzene–carbazole conjugated copolymers is synthesized by the Suzuki–Miyaura coupling method. Introduction of methyl substituents to the azobenzene unit of the monomer, and polymerization in a high‐boiling solvent improve the molecular weight of the polymer. Decrease of effective conjugation length due to the twisted structure of the main chain allows progress of photoisomerization. The microstructure of the polymer was determined with grazing incidence X‐ray diffraction (GIXD) measurements using synchrotron radiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1756–1764  相似文献   

9.
An alternating triarylamine‐functionalized fluorene‐based copolymer synthesized using a Suzuki–Miyaura cross‐coupling procedure is used as blue emitting layer in polymer light‐emitting diodes (PLEDs). Subsequently, the effects of CdSe/ZnS quantum dots (QDs) on the optoelectronic properties of the copolymer are investigated. Therefore, CdSe/ZnS QDs are embedded into the copolymer matrix and hybrid PLEDs are fabricated. The devices comprised of CdSe/ZnS QDs reveal enhanced performances, yielding about 3.4 times more luminous efficiency than that of the device without QDs. Further enhancement is achieved by using electron transport layer; the luminous efficiency rose from 0.065 to 1.740 cd A?1 for the hybrid PLEDs, corresponding to a superb 27‐fold intensification of the efficiency. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 147–156  相似文献   

10.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Kumada‐Tamao coupling polymerization of 1,4‐dialkoxy‐2‐bromo‐5‐(2‐chloromagnesiovinyl)benzene ( 1 ) and 1,4‐dialkoxy‐2‐(2‐bromovinyl)‐5‐chloromagnesiobenzene ( 2 ) with a Ni catalyst and Suzuki‐Miyaura coupling polymerization of 2‐{2‐[(2,5‐dialkoxy‐4‐iodophenyl)]vinyl}‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolane ( 3 ), its bromo counterpart 4 , and 2,5‐dialkoxy‐4‐(2‐bromovinyl)phenylboronic acid ( 5 ) with a Pd initiator were investigated under catalyst‐transfer condensation polymerization conditions for the synthesis of well‐defined poly(p‐phenylenevinylene) (PPV). The Kumada‐Tamao polymerization of vinyl Grignard‐type monomer 1 with Ni(dppp)Cl2 at room temperature did not proceed, whereas aryl Grignard‐type monomer 2 afforded oligomers of low molecular weight. Matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra of the polymer obtained from 2 implied that the Grignard end group reacted with tetrahydrofuran to terminate polymerization. On the other hand, Suzuki‐Miyaura polymerization of vinyl boronic acid ester type monomers 3 and 4 and phenylboronic acid type monomer 5 with a Pd initiator and aqueous KOH at ?20 °C to room temperature yielded the corresponding PPV with high molecular weight within a few minutes. However, the molecular weight distribution was broad, and MALDI‐TOF mass spectra showed the peaks of polymers bearing no initiator unit at the chain end, as well as those of polymers with the initiator unit. These results indicated that intermolecular chain transfer of the Pd catalyst occurred. Dehalogenation and disproportionation of the growing end also took place as side reactions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2643‐2653  相似文献   

12.
Herein, we describe a rhodium‐catalyzed enantio‐ and diastereoselective Suzuki–Miyaura cross‐coupling between racemic fused bicyclic allylic chlorides and boronic acids. The highly stereoselective transformation allows for the coupling of aryl, heteroaryl, and alkenyl boronic acids and gives access to functionalized bicyclic cyclopentenes, which can be converted into other five‐membered‐ring scaffolds with up to five contiguous stereocenters. Preliminary mechanistic studies suggest that these reactions occur with overall retention of the relative stereochemistry and are enantioconvergent for pseudo‐symmetric allylic chloride starting materials. In addition, a bicyclic allylic chloride starting material without pseudo‐symmetry undergoes a highly enantioselective regiodivergent reaction.  相似文献   

13.
The tetrakis(4‐N‐methylpyridinium)porphyrinatopalladium(II) iodide, [Pd(TMPyP)]I4, supported on Dowex 50WX8 and Amberlite IR‐120 ion‐exchange resins, was used as heterogeneous, recyclable and active catalyst for the Suzuki–Miyaura and Heck cross‐coupling reactions. These catalysts were applied to coupling of various aryl halides with phenylboronic acid and styrene in Suzuki and Heck reactions, respectively, and the corresponding products were obtained in excellent yields and short reaction times. The catalysts could be recovered easily by simple filtration and reused several times without significant loss of their catalytic activity. The catalysts were characterized by diffuse‐reflectance UV–visible spectroscopy and scanning electron microscopy, and their stability was confirmed by TGA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
王敏  王磊 《中国化学》2008,26(9):1683-1688
本文报道了温和及有效的氯化钯多相催化无配体Suzuki-Miyaura反应,反应在室温、敞口容器和短时间内完成。各种碘代芳烃、溴代芳烃和活泼的氯代芳烃与四苯硼钠和芳香有机硼酸偶联高产率生成相应的产物,而且催化剂可循环使用4次不降低活性。  相似文献   

15.
We have investigated the requirements for efficient Pd‐catalyzed Suzuki–Miyaura catalyst‐transfer condensation polymerization (Pd‐CTCP) reactions of 2‐alkoxypropyl‐6‐(5‐bromothiophen‐2‐yl)‐3‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine ( 12 ) as a donor–acceptor (D –A) biaryl monomer. As model reactions, we first carried out the Suzuki–Miyaura coupling reaction of X–Py–Th–X′ (Th=thiophene, Py=pyridine, X, X′=Br or I) 1 with phenylboronic acid ester 2 by using tBu3PPd0 as the catalyst. Monosubstitution with a phenyl group at Th‐I mainly took place in the reaction of Br–Py–Th–I ( 1 b ) with 2 , whereas disubstitution selectively occurred in the reaction of I–Py–Th–Br ( 1 c ) with 2 , indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the Mn of the obtained polymer, as well as the matrix‐assisted laser desorption ionization time‐of‐flight (MALDI‐TOF) mass spectra, indicated that Suzuki–Miyaura coupling polymerization of 12 with (o‐tolyl)tBu3PPdBr initiator 13 proceeded in a step‐growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki–Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step‐growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th‐Pd‐Py complex formed by transmetalation of polymer Th–Br with (Pin)B–Py–Th–Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal–arene η2‐coordination for D and A monomers may be needed for CTCP reactions of biaryl D–A monomers.  相似文献   

16.
A concise and efficient synthesis of densely substituted novel pyrazoles with alkynyl, aryl and ferrocenyl functionalities is reported, providing a platform for biological studies. The general strategy involves Sonogashira and Suzuki–Miyaura cross‐coupling reactions of easily obtainable 5‐ferrocenyl/phenyl‐4‐iodo‐1‐phenylpyrazoles with terminal alkynes and boronic acids, respectively. The starting 4‐iodopyrazoles were synthesized by electrophilic cyclization of α,β‐alkynic hydrazones with molecular iodine. Sonogashira reactions have been achieved by employing 5 mol% PdCl2(PPh3)2, 5 mol% CuI, excess Et3N and 1.2 equiv. of terminal alkyne, relative to 4‐iodopyrazole, in tetrahydrofuran at 65 °C, while Suzuki–Miyaura reactions have been accomplished using 5 mol% PdCl2(PPh3)2 and 1.4 equiv. of both boronic acid/ester and KHCO3, with respect to 4‐iodopyrazole, in 4:1 dimethylformamide–H2O solution at 110 °C. Both Sonogashira and Suzuki–Miyaura coupling reactions have proven effective for the synthesis of alkynyl‐, aryl‐ and ferrocenyl‐substituted pyrazoles and demonstrated good tolerance to a diverse range of substituents, including electron‐donating and electron‐withdrawing groups. These coupling approaches could allow for the rapid construction of a library of functionalized pyrazoles of pharmacological interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, air‐stable, inexpensive and easily prepared molecule, N‐methyliminodiacetic acid (MIDA), is reported as a ligand for palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction of phenylboronic acid with aryl chlorides. The yield of the corresponding Suzuki coupling reaction is up to around 90% at both high temperature of 80°C and room temperature under ambient atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A palladium‐catalyzed C(sp3)−C(sp2) Suzuki–Miyaura cross‐coupling of aryl boronic acids and α‐(trifluoromethyl)benzyl tosylates is reported. A readily available, air‐stable palladium catalyst was employed to access a wide range of functionalized 1,1‐diaryl‐2,2,2‐trifluoroethanes. Enantioenriched α‐(trifluoromethyl)benzyl tosylates were found to undergo cross‐coupling to give the corresponding enantioenriched cross‐coupled products with an overall inversion in configuration. The crucial role of the CF3 group in promoting this transformation is demonstrated by comparison with non‐fluorinated derivatives.  相似文献   

19.
A series of Pd–N‐heterocyclic carbene (Pd‐NHC) complexes with pyrazine ( 1 ) or pyridine ( 2 ) and NHC ( 3 ) were synthesized and characterized by elemental analysis and spectroscopic methods. In addition, the molecular structure of 3 was determined by X‐ray diffraction studies. The effects of these ligands on catalyst activation and the performance of complexes 1 , 2 , 3 were studied on Suzuki–Miyaura reactions of phenylboronic acid with aryl chlorides. Finally, we demonstrated that complex 1 is very adept at re‐forming the Kumada–Tamao–Corriu cross‐coupling reaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Suzuki–Miyaura cross‐coupling reactions between a variety of alkyl halides and unactivated aryl boronic esters using a rationally designed iron‐based catalyst supported by β‐diketiminate ligands are described. High catalyst activity resulted in a broad substrate scope that included tertiary alkyl halides and heteroaromatic boronic esters. Mechanistic experiments revealed that the iron‐based catalyst benefited from the propensity for β‐diketiminate ligands to support low‐coordinate and highly reducing iron amide intermediates, which are very efficient for effecting the transmetalation step required for the Suzuki–Miyaura cross‐coupling reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号