首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate the effect of the asymmetry of the triblock copolymers on their thermoresponsive self‐assembly behavior. To this end, nine ABA‐type triblock copolymers with n‐butyl methacrylate and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) consisting of the A and the B blocks, respectively, were synthesized. Polymers of three different DMAEMA contents (50, 60, and 70 wt %) were synthesized while varying the length ratio of the two hydrophobic A blocks. Specifically, one symmetric ABA triblock copolymer and two asymmetric ABA′ triblock copolymers with the length of the second A block to be twice or four times bigger than the length of the first A block (AB2A and AB4A triblock copolymer) were synthesized for each DMAEMA composition. Three statistical copolymers were also synthesized for comparison. The thermoresponsive behavior of the copolymers was studied and it was found that the cloud point and rheological properties of the polymers were strongly affected by the architecture (statistical vs. block) and less strongly by the DMAEMA composition and the asymmetry of the polymers. Nevertheless, interestingly the asymmetry of the ABA triblock copolymers did influence the thermoresponsive behavior with the more symmetric polymers presenting a sol–gel transition at lower temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2850–2859.  相似文献   

2.
Zhang R  Wang Y  Du FS  Wang YL  Tan YX  Ji SP  Li ZC 《Macromolecular bioscience》2011,11(10):1393-1406
A family of thermoresponsive cationic copolymers (TCPs) that contain branched PEI 25 K as the cationic segment and poly(MEO(2)MA-co-OEGMA(475)) as the thermosensitive block (TP) is prepared. The DNA binding capability, physicochemical properties, and biological performance of the TCPs are studied. All of these TCPs can condense DNA to form polyplexes with diameters of 150-300 nm and zeta potentials of 7-32 mV at N/P ratios between 12 and 36. The length of TP block is a key factor for shielding the positive surface charge of the polyplexes and protecting them against protein adsorption. TCPs with a higher TP content have a lower cytotoxicity while the best transfection performance is achieved by the TCPs with longest TP length, reaching a level of the intact PEI 25 K in the presence of serum.  相似文献   

3.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

4.
Conetworks based on end‐linked homopolymers and amphiphilic gradient copolymers were synthesized by the atom transfer radical polymerization (ATRP) of 2‐(dimethylamino)ethyl methacrylate (DMAEMA, hydrophilic monomer), methyl methacrylate (MMA, hydrophobic monomer), and ethylene glycol dimethacrylate (EGDMA, hydrophobic cross‐linker). Sequential, rather than step‐wise polymerizations, were performed to enhance the livingness of the polymerization, particularly for the end‐linking step, and to ultimately obtain conetworks based on gradient rather than pure block copolymers. Amphiphilic conetworks based on end‐linked MMA‐DMAEMA‐MMA gradient copolymers of different compositions were successfully synthesized as confirmed by the narrow molecular weight distributions of the linear precursors, the rigidity of the amphiphilic conetwork products and the low sol‐fraction extracted from the conetworks. Similarly successful was the ATRP synthesis of an end‐linked conetwork based on a DMAEMA‐MMA statistical copolymer and of a randomly cross‐linked conetwork that resulted from the simultaneous terpolymerization of DMAEMA, MMA and EGDMA. An amphiphilic conetwork based on an end‐linked DMAEMA‐MMA‐DMAEMA gradient copolymer presented a less rigid, mucous‐like, texture. The degrees of swelling (DS) in tetrahydrofuran of all the conetworks were higher than those measured in pure water, whereas the aqueous DS values increased by lowering the pH and increasing the DMAEMA content of the conetworks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1878–1886, 2010  相似文献   

5.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

6.
Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (1H NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW () and the number of arms of the stars. The of the stars ranged between 359,000 and 565,000 g mol−1, while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA10-b-MMA30-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMAEMA10-b-MMA30-star, which gave a very opaque solution over the whole pH range.  相似文献   

7.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

8.
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007  相似文献   

9.
Materials bearing ionic monomers were obtained through free radical terpolymerization of methyl methacrylate (MMA), poly(ethylene glycol) methyl ether methacrylate (PMEM) or poly(ethylene glycol) ethyl ether methacrylate (PEEM) with methacrylic acid (MA) and sodium styrene sulfonate (NaSS). The reactions were carried out in dimethyl sulfoxide using azobis(isobutyronitrile) as initiator. The reactivity ratios of the different couple of monomers were calculated according to the general copolymerization equation using the Finnemann-Ross, Kelen-Tüdos and Tidwell-Mortimer methods. The values of the reactivity ratios indicate that the different monomer units can be considered as randomly distributed along the chains for terpolymerizations of MMA, PMEM or PEEM with MA and NaSS. The average composition of the comonomers in the different terpolymers were calculated, showing a good agreement between the experimental and theoretical compositions. The instantaneous compositions are constant until about 70% of conversion. For higher conversions, the insertion of ionic monomers increases or decreases according to the system studied.  相似文献   

10.
A doubly hydrophilic triblock copolymer of poly(N,N‐dimethylamino‐2‐ethyl methacrylate)‐b‐Poly(ethylene glycol)‐b‐poly(N,N‐dimethylamino‐2‐ethylmethacrylate) (PDMAEMA‐b‐PEG‐b‐PDMAEMA) with well‐defined structure and narrow molecular weight distribution (Mw/Mn = 1.21) was synthesized in aqueous medium via atom transfer radical polymerization (ATRP) of N,N‐dimethylamino‐2‐ethylmethacrylate (DMAEMA) initiated by the PEG macroinitiator. The macroinitiator and triblock copolymer were characterized with 1H NMR and gel permeation chromatography (GPC). Fluorescence spectroscopy, dynamic light scattering (DSL), transmittance measurement, and rheological characterization were applied to investigate pH‐ and temperature‐induced micellization in the dilute solution of 1 mg/mL when pH > 13 and gelation in the concentrated solution of 25 wt % at pH = 14 and temperatures beyond 80 °C. The unimer of Rh = 3.7 ± 0.8 nm coexisted with micelle of Rh = 45.6 ± 6.5 nm at pH 14. Phase separation occurred in dilute aqueous solution of the triblock copolymer of 1 mg/mL at about 50 °C. Large aggregates with Rh = 300–450 nm were formed after phase separation, which became even larger as Rh = 750–1000 nm with increasing temperature. The gelation temperature determined by rheology measurement was about 80 °C at pH 14 for the 25 wt % aqueous solution of the triblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5869–5878, 2008  相似文献   

11.
Novel amphiphilic network polymers consisting of nonpolar, short primary polymer chains and polar, long crosslink units were prepared, and the swelling behavior of resulting amphiphilic gels is discussed by focusing on the influence of characteristic dangling chains; that is, benzyl methacrylate (BzMA) was copolymerized with tricosaethylene glycol dimethacrylate [CH2?C(CH3)CO(OCH2CH2)23OCOC(CH3)?CH2, PEGDMA‐23] in the presence of lauryl mercaptan as a chain‐transfer agent because BzMA forms nonpolar, short primary polymer chains and PEGDMA‐23 as a crosslinker contains a polar, long poly(oxyethylene) unit. The enhanced incorporation of dangling chains into the network polymer was brought by shortening the primary polymer chain length, and copolymerization with methoxytricosaethylene glycol methacrylate, a mono‐ene counterpart of PEGDMA‐23, enforced the incorporation of flexible dangling poly(oxyethylene) chains into the network polymer, although the former dangling chains as terminal parts of primary poly(BzMA) chains were rather rigid. Then, the influence of characteristic dangling chains on the swelling behavior of amphiphilic gels was examined in mixed solvents consisting of nonpolar t‐butylbenzene and polar methanol. The profiles of the solvent‐component dependencies of the swelling ratios were characteristic of amphiphilic gels. The introduction of dangling poly(oxyethylene) chains led not only to an increased swelling ratio but also to sharpened swelling behavior of amphiphilic gels. The swelling response of amphiphilic gels was checked by changing the external solvent polarity. The dangling chains with freely mobile end segments influenced the swelling response of gels. The amphiphilic gels with less entangled, collapsed crosslink units exhibited faster swelling response than the ones with more entangled, collapsed primary polymer chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2192–2201, 2004  相似文献   

12.
Novel thermosensitive nanocomposite (NC) hydrogels consisting of organic/inorganic networks are prepared via in situ free radical polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA) in the presence of inorganic cross‐linker clay in aqueous solution. The obtained clay/P(MEO2MA‐co‐OEGMA) hydrogels exhibit double volume phase transition temperatures, an upper critical solution temperature (UCST), and a lower critical solution temperature (LCST), which can be controlled between 5 and 85 °C by varying the fraction of OEGMA units and the weight percentage of cross‐linker clay. These new types of NC hydrogels with excellent reversible thermosensitivity are promising for temperature‐sensitive applications such as smart optical switches.

  相似文献   


13.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

14.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

15.
For the development of pH‐sensitive surfactants to be used in water‐in‐oil fermentation, the free‐radical terpolymerization of methacrylic acid (MAA), methoxy poly(ethylene glycol) methacrylate (MPEGMA), and lauryl methacrylate (LMA), at a molar ratio of 1.0:0.04:0.76, was studied with two initiators, azobisisobutyronitrile (AIBN) and hydrogen peroxide, at different concentrations. The polymer synthesized with 0.45% AIBN as the initiator was the most promising, giving similar conversions of all three monomers throughout the 10‐h polymerization. The subsequent study on AIBN‐initiated systems indicated that MPEGMA caused an increase‐then‐decrease profile of the MAA conversion with a plateau around an ethylene glycol/MAA ratio of 1–2. This observation was fairly consistent with the well‐known type II template polymerization of poly(ethylene glycol) (PEG)–MAA systems. The reactivity ratios obtained in this study suggested that the polymer synthesized with AIBN as the initiator had a structure of alternating blocks of MAA and LMA, with isolated PEG grafts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2950–2959, 2004  相似文献   

16.
A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene‐co‐butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST‐BA = 0.087 and χEMA‐BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000  相似文献   

17.
Poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) homopolymers with low polydispersities were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization. The performances of two chain transfer agents, 2‐cyanoprop‐2‐yl dithiobenzoate and 4‐cyanopentanic acid dithiobenzoate (CPADB), were compared. It was found that the polymerization of 2‐(diethylamino) ethyl methylacrylate was under good control in the presence of CPADB with 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as initiator in 1,4‐dioxane at 70 °C. The kinetic behaviors were investigated under different CPADB/ACPA molar ratios. A long polymerization inhibition period was observed at high [CPADB]/[ACPA] ratio. The influences of [CPADB]/[ACPA] ratio, monomer/[CPADB] ratio, and temperature were studied with respect to monomer conversion, molecular weight control, and polydispersity index (PDI). The PDI decreased from 1.21 to 1.12, as the CPADB/ACPA molar ratio changed from 2 to 10. The molecular weight of PDEAEMA could be controlled by monomer/CPADB molar ratio. The control over MW and PDI was improved as the temperature increased from 60 to 70 °C; however, an additional increase to 80 °C led to a loss of control. Using PDEAEMA macroRAFT agent, pH/thermo double‐responsive block copolymers of PDEAEMA and poly(N‐isopropylacrylamide) (PDEAEMA‐b‐PNIPAM) with narrow polydispersity (PDI, 1.24) were synthesized. The lower critical solution temperature of PDEAEMA‐b‐PNIPAM block copolymer depended on the environmental pH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3294–3305, 2008  相似文献   

18.
Copolymerizations of methyl 2‐acetamidoacrylate (MAA) with methyl methacrylate (MMA) were carried out at 60 °C in chloroform. Copolymers containing MAA units in the range of 83–90 mol % exhibited a lower critical solution temperature (LCST), although homopolymers of MAA and MMA did not. The LCST of polymer solutions decreased with (1) an increase in the concentration of the copolymer, (2) a decrease in the MAA content in the copolymer, and (3) an increase in the concentration of salts added. The effectiveness of anionic species for reducing the LCST is NO < Cl? < SO < SO. Divalent anion is more effective for lowering the LCST than monovalent anion. However, there is no difference between cationic species in the salting‐out effect. Sodium carbonate and sodium phosphate had a salting‐in effect. Salting‐out coefficients were evaluated from the relationship between the logarithm of solubility of the copolymers and the salt concentration. Salting‐out coefficients of the copolymer depended not on the composition of the copolymers but on the salt added. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1945–1951, 2002  相似文献   

19.
A series of amphiphilic cationic random copolymers, namely poly[2‐(methacryloyloxy)ethyl trimethylammonium chloride‐co‐stearyl methacrylate] or poly(MADQUAT‐co‐SMA), have been synthesized via conventional free‐radical copolymerization using 2,2′‐azobisisobutyronitrile (AIBN) as initiator and n‐dodecanethiol as chain transfer agent. The resultant products were then characterized by FT‐IR, 1H NMR, MALDI‐TOF MS measurements. From the number‐average molecular weights of the copolymers, we can conclude that these copolymers have oligomeric structure with a limited number of hydrophilic and hydrophobic moieties in a short polymer chain. The reactivity ratios (rMADQUAT = 0.83, rSMA = 0.25) between the hydrophilic MADQUAT monomer and the hydrophobic SMA monomer were calculated by the Finemann and Ross method, which was based on the results of 1H NMR analysis. The surface activity of the random copolymers was studied by the combination of surface tension and contact angle measurement, and the results indicated that these copolymers possess relatively high surface activity. The critical aggregation concentrations (cac) of the copolymers in aqueous solution were determined by fluorescence probe method as well as surface tension measurement. The different nanoparticles of poly(MADQUAT‐co‐SMA) copolymers formed in pure water or ethanol‐water mixture were proved by the particle size and size distribution in the measurement of dynamic light scattering (DLS). Furthermore, using transmission electron microscopy (TEM), we could observe various self‐assembly morphologies of these random copolymer. All these results show that the amphiphilic cationic random copolymers have a good self‐assembly behavior, even if they are ill‐defined copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4670–4684, 2009  相似文献   

20.
New Nickel (II) catalytic systems based on N,O chelate ligands, activated by methylaluminoxane, have been checked in the homopolymerization of methyl methacrylate (MMA) and its copolymerization with ethylene. In particular, the bis(8‐hydroxy‐5‐nitro‐quinolate)nickel(II)/methylaluminoxane system as well as the catalysts obtained by oxidative addition of either 8‐hydroxy‐5‐nitro‐quinoline or 8‐hydroxy‐5,7‐dinitro‐quinoline or 4‐nitro‐2‐(p‐nitrobenzylideneamino)‐phenol to Ni(cod)2, subsequently activated by methylaluminoxane, have been employed. The influence of the reaction parameters on the catalytic activity and the characteristics of the resulting polymers has been investigated. All the obtained poly(methyl methacrylate) samples display a largely prevailing syndiotacticity degree, high molecular weights and a rather large polydispersity. The catalytic systems obtained through the oxidative procedure are able also to give copolymers of MMA with ethylene producing highly linear polyethylenes containing a low amount (1.5–2 mol %) of MMA counits, thus affording materials with improved surface properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 620–633, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号