首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical and passivation properties of three selected binary xSn? Ag (x = 26, 50 and 70 wt%) alloys were studied by means of open‐circuit potential variation, potentiodynamic curves and a.c. impedance spectroscopy techniques.The specimens were polarized between ?1.0 and 0.5 V versus saturated calomel electrode (SCE) in naturally oxygenated sulfuric acidsolutions of different concentrations The experimental results indicate that icorr increases with increasing either the acid concentration or the Sn content in the solid phase. Electrochemical impedance spectroscopyresults measured at the free corrosion potential confirm that alloy I (26Sn? Ag) characterizes by thicker passive film with higher protective ability compared to the other two samples richer in tin component. The exponential variation of the relative thickness of the surface film on any of the tested samples assumes an almost constant thickness for a thin barrier layer and a much larger outer porous layer that dominates the total film thickness on the alloy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
An efficient visible light-mediated, eosin Y-catalyzed synthesis of oxazole has been developed from benzil with primary amines, that providing a straightforward, green, and environmentally benign access to a wide variety of substituted oxazole-2-amines under mild reaction conditions.  相似文献   

3.
The reactivity of disulfide and diselenide derivatives towards F? and CN? nucleophiles has been investigated by means of B3PW91/6‐311+G(2df,p) calculations. This theoretical survey shows that these processes, in contrast with the generally accepted view of disulfide and diselenide linkages, do not always lead to S? S or Se? Se bond cleavage. In fact, S? S or Se? Se bond fission is the most favorable process only when the substituents attached to the S or the Se atoms are not very electronegative. Highly electronegative substituents (X) strongly favor S? X bond fission. This significant difference in the observed reactivity patterns is directly related to the change in the nature of the LUMO orbital of the disulfide or diselenide derivative as the electronegativity of the substituents increases. For weakly electronegative substituents, the LUMO is a σ‐type S? S (or Se? Se) antibonding orbital, but as the electronegativity of the substituents increases the π‐type S? X antibonding orbital stabilizes and becomes the LUMO. The observed reactivity also changes with the nature of the nucleophile and with the S or Se atom that undergoes the nucleophilic attack in asymmetric disulfides and diselenides. The activation strain model provides interesting insights into these processes. There are significant similarities between the reactivity of disulfides and diselenides, although some dissimilarities are also observed, usually related to the different interaction energies between the fragments produced in the fragmentation process.  相似文献   

4.
This paper describes the recent advances in the conceptually new bifunctional Ir and Ru catalysts for asymmetric catalytic reactions. These reactions include the enantioselective Michael addition of 1,3‐dicarbonyl compounds to cyclic enones and nitroalkenes, and the enantioselective direct amination of α‐cyanoacetates with diazoesters. The outcome of these reactions in terms of reactivity and selectivity was delicately influenced by the catalyst structures and the reaction conditions including the solvents used. Even with a 1 : 1 molar ratio of donors to acceptors, the reactions proceeded smoothly to give the corresponding chiral adducts with an excellent yield and enantiomeric excess (ee). Preliminary mechanistic studies showed that the key stage of the catalytic cycle is the interaction of the bifunctional catalyst with a pronucleophilic reagent that leads to stereoselective formation of C‐, O‐, or N‐bound complexes. The resulting protonated catalyst bearing metal‐bound nucleophiles readily reacts with electrophiles to provide C? C and C? N bond formation products in a highly stereoselective manner. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 106–123; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20172  相似文献   

5.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

6.
The thermally stable [(tBuMe2Si)2M] (M=Zn, Hg) generate R3Si. radicals in the presence of [(dmpe)Pt(PEt3)2] at 60–80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn ( 2 a and 2 b ), M=Hg ( 3 a and 3 b )) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn ( 5 ), Hg ( 6 )) whose structures were determined by EPR spectroscopy and DFT calculations.  相似文献   

7.
Pd2+‐Exchanged graphite oxide (GO) serves as a precatalyst for the formation of Pd‐nanoparticles which are then deposited on the highly functionalized carbonaceous support. This versatile, air‐stable, and ligand‐free system was applied successfully to Suzuki? Miyaura couplings of some aryl chlorides and to the Mizoroki? Heck as well as the Sonogashira reaction showing relatively high activities and good selectivities. Like with other ligand‐free supported systems, the reaction proceeded dominantly by a homogeneous mechanism, but attack of an aryl iodide to Pd‐nanoparticles can be excluded as substantial contribution to the entire catalytic process. Beside its straightforward preparation and its stability in air, the system combines the advantages of both homogeneous and heterogeneous catalysis.  相似文献   

8.
An sp 2 /sp 3 get‐together : A novel and efficient method can be used to synthesize 3,3‐disubstitued oxindoles by the direct intramolecular oxidative coupling of an aryl C? H and a C? H center (see scheme; DMF=N,N‐dimethylformamide).

  相似文献   


9.
A nanocomposite of Pd? TiO2? SiO2 is developed through a sol‐gel process from the reaction products of titanium isopropoxide followed by mixing the same with palladium linked 3‐glycidoxypropyltrimethoxysilane. The reaction product is sonicated and calcinated to obtain the nanocomposite of Pd? TiO2? SiO2. The calcination at 600 °C yielded an amorphous structure whereas at 900 °C it resulted into a nanocrystalline structure. The nanocomposite of palladium was further characterized by TEM, XRD, IR and EDS. The material acts as an efficient electrocatalyst. Electrocatalysis of ascorbic acid is observed at 0.1 V vs. Ag/AgCl, shows linearity between 1 µM and 1 mM in 0.1 M phosphate buffer (pH 7.0).  相似文献   

10.
11.
Attachment of one electron to 1,2-diBeX-benzene and 1,2-diZnX-benzene derivatives leads to the formation of stronger Be Be and Zn Zn interaction compared to the neutral one. This is reflected in the dramatic shortening of the Be Be and Zn Zn distance. The formation of these 2-center-1-electron bonds have also been confirmed by topological survey of electron density using quantum theory of atoms in molecules and electron localization function. The formation of these bonds is expected to render stability to these radical anions. These radical anions are stable toward electron detachment and computed bond dissociation energy values are also significant.  相似文献   

12.
The coordination chemistry of inorganic amides in Group 3 and lanthanide chemistry is discussed. Three different ligand systems (phosphino‐amides, bis(phosphino)amides, and bis(phosphinimino)methanides) that consist of one or more P N units were used. In this series the steric demand of the ligands is increased in a stepwise fashion and the negative charge is delocalized over more atoms. These properties were used in the design of new lanthanide complexes. For all three compounds the synthesis of the alkali metal derivatives is reported first, followed by the reaction of the alkali metal salts with various lanthanide trichlorides. Further reactions of the obtained lanthanide complexes as well as their application as catalysts are discussed. Most of the reported complexes show a dynamic behavior in solution. In phosphinoamide and bis(phosphino)amide complexes, in which the phosphorus atom is in oxidation state +3, there is always a weak coordination of the phosphorus atom to the lanthanide atom observed. In bis(phosphinimino)methanide complexes, in which the phosphorus atom is in oxidation state +5, no such interaction is noticeable. Instead a weak coordination of the methine atom to the center metal can be seen in the solid state. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:514–520, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10096  相似文献   

13.
Tuning the nature of the linker in a L∼BHR phosphinoborane compound led to the isolation of a ruthenium complex stabilized by two adjacent, δ‐C H and ε‐Bsp2 H, agostic interactions. Such a unique coordination mode stabilizes a 14‐electron “RuH2P2” fragment through connected σ‐bonds of different polarity, and affords selective B H, C H, and B C bond activation as illustrated by reactivity studies with H2 and boranes.  相似文献   

14.
The addition of NO (0 to 400ppm) to mixtures of H2 (ca. 1%) and O2 (0.7 to 22%) has been studied over the temperature range 700 to 825 K, in a flow reactor at atmospheric pressure. The overall effect of NO is to promote the oxidation of H2 but high concentrations of O2 actually inhibit the NO-promoted oxidation of H2. A detailed kinetic mechanism has been constructed and found to describe the experimental observations. The promotion of the oxidation of H2 arises through the catalytic cycle The ability of R.34 to reactivate chains normally terminated by the formation of HO2 is a key feature of this system. The predictions are highly sensitive to the rate of the reaction R.5 and the rate constants for this reaction is the only adjustable parameter required in the model. The value of k5,N2 found to describe all the results has an absolute uncertainty <35%. The uncertainty relative to other important rate constants in the H2? O2 system is less than 10%. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Complexes with terminal phosphanido (M PR2) functionalities are believed to be crucial intermediates in new catalytic processes involving the formation of P P and P C bonds. We showcase here the isolation and characterization of mononuclear phosphanide rhodium complexes ([RhTp(H)(PR2)L]) that result from the oxidative addition of secondary phosphanes, a reaction that was also explored computationally. These compounds are active catalysts for the dehydrocoupling of PHPh2 to Ph2P PPh2. The hydrophosphination of dimethyl maleate and the unactivated olefin ethylene is also reported. Reliable evidence for the prominent role of mononuclear phosphanido rhodium species in these reactions is also provided.  相似文献   

16.
The Ni? Mo/Mg(OH)2 (NMM) hybrid as an efficient flame retardancy and smoke suppression composite for polypropylene (PP) was synthesized through Ni? Mo co‐precipitation on the surface of Mg(OH)2 (MH) hexagonal nanosheets. Compared to PP/MH, PP/NMM exhibited excellent smoke suppressing and flame retardancy on the heat release rate, total heat release, smoke production rate, total smoke production, CO production rate and total CO production with the same loading. The reduced hazard of PP/NMM was mainly attributed to the high physical barrier effect of compact char residues on heat, smoke and combustible gas. The mechanism study indicated that multiwalled carbon nanotubes (MWCNTs) generated from the catalytic carbonization of PP by the Ni? Mo compound could play the role of “rebar” to strengthen the char residues, avoid the generation of cracks and form highly compact char layer. Furthermore, MgO could facilitate the production of MWCNTs through changing the pyrolysis process of PP and increasing the reaction time between pyrolysis gas and Ni? Mo compound. Hence, the new Ni? Mo/MH catalyst hybrid may explore the potential for solving the tough problem of the flammability and heavy smoke of the polyolefins system.  相似文献   

17.
The conformational stability of aminomethanol and its methylated derivatives has been investigated by means of ab initio methods in the gas phase and aqueous solution. Among the computational levels employed, HF/6‐31G**//HF/6‐31G** calculations correctly describe the conformational features of this series of compounds, and agree well with the results obtained using larger basis sets and including ZPE or electron correlation corrections. Calculated energies and geometries follow the known trends associated to the generalized anomeric effect. Thus, the most stable conformers exhibit preferences for the trans orientations of the Lp N C O and Lp O C N moieties. However, reverse anomeric effects are observed when a methyl group is bonded to the oxygen, because the Lp O C N unit prefers a gauche orientation (that is, trans Me O C N). The natural bond orbital (NBO) method was employed to explain the cited conformational preferences. According to the NBO results, trans arrangements are preferred because the stabilization due to charge delocalization is more important than electrostatic and steric contributions. This explanation agrees with the conclusions obtained by other independent procedures based on energy decomposition schemes. The NBO method was also used to explain the origin of the rotational barriers around the C O and C N bonds in terms of the balance between unfavorable hyperconjugation and electrostatic and steric effects. Changes in conformational stability caused by methylations in different molecular positions were also explained by the influence of the methyl groups on lone‐pair delocalization and on steric effects. Finally, the effect of solvation was studied by means of the ab initio PCM method, and the significant changes on relative energies found were analyzed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 462–477, 2000  相似文献   

18.
The anodic behavior of tin, indium, and tin–indium alloys was studied in oxalic acid solution using potentiodynamic technique and characterized by X-ray diffraction and scanning electron microscopy. The E/I curves showed that the anodic behavior of all investigated electrodes exhibits active/passive transition. In the case of tin, the active dissolution region involves two anodic peaks (I and II) prior to permanent passive region. On the other hand, the active dissolution of indium involves four peaks (I–IV) prior to permanent passive region. The first (I) can be associated with the active dissolution of indium to InOOH, the second peak (II) to the formation of In(OH)3, the third peak (III) to partially dehydration of In(OH)3, and the peak (IV) to complete dehydration of In(OH)3 to In2O3. When the surface is entirely covered with In2O3 film, the anodic current falls to a small value (I pass) indicating the onset of passivation. The active dissolution potential region of the first three tin–indium alloys involves a net anodic contribution peak, and this is followed by a passive region. It is expected that the investigated peak is related to the formation of In2O3 and SnO (mixed oxides). When the formation of oxides (the oxides of In and Sn) exceeds its dissolution rate, the current drops, indicating the onset of passivation precipitation of In2O3/SnO and SnO2 on the surface which blocks the dissolution of active sites. The alloys IV and V showed small second peak at about −620 mV which may be related to oxidation of In to In2O3 due to high In content in the two examined alloys. The active dissolution and passive current are increase with increasing temperature for all investigated metals and their alloys.  相似文献   

19.
The ability of bridging thiophenolate groups (RS?) to transmit magnetic exchange interactions between paramagnetic NiII ions is examined. Specific attention is paid to complexes with large Ni? SR? Ni angles. For this purpose, dinuclear [Ni2L1(μ‐OAc)?I2][I5] ( 2 ) and trinuclear [Ni3L2(OAc)2][BPh4]2 ( 3 ), where H2L1 and H2L2 represent 24‐membered macrocyclic amino‐thiophenol ligands, are prepared and fully characterized by IR‐ and UV/Vis spectroscopy, X‐ray crystallography, static magnetization M measurements and high‐field electron spin resonance (HF‐ESR). The dinuclear complex 2 has a central N3Ni2(μ‐S)2(μ‐OAc)Ni2N3 core with a mean Ni? S? Ni angle of 92°. The macrocycle L2 supports a trinuclear complex 3 , with distorted octahedral N2O2S2 and N2O3S coordination environments for one central and two terminal NiII ions, respectively. The Ni? S? Ni angles are at 132.8° and 133.5°. We find that the variation of the bond angles has a very strong impact on the magnetic properties of the Ni complexes. In the case of the Ni2‐complex, temperature T and magnetic field B dependencies of M reveal a ferromagnetic coupling J=?29 cm?1 between two NiII ions (H=JS1S2). HF‐ESR measurements yield a negative axial magnetic anisotropy (D<0) which implies a bistable (easy axis) magnetic ground state. In contrast, for the Ni3‐complex we find an appreciable antiferromagnetic coupling J′=97 cm?1 between the NiII ions and a positive axial magnetic anisotropy (D>0) which implies an easy plane situation.  相似文献   

20.
Using the electrospinning approach, various percentages of less expensive metal alloy-decorated nanofiber catalysts have been successfully made as a substitute for platinum in direct methanol fuel cells (DMFC). This work focuses on the synthesis and characterization of catalysts with metal fixed ratio of 20% wt for DMFC applications, specifically Ni/CNFs, Co/CNFs, and Ni Co Mo/CNFs. The catalysts are characterized using various techniques, including x-ray diffraction, scanning electron microscope, transmission electron microscopy, energy dispersive x-ray, and electrochemical measurements. All the prepared samples, regardless of the metal concentration, had good nanofiber form and a distinct nanoparticle appearance, according to the scanning electron microscope (SEM). Chromatography, scan rate, response time, and cyclic voltammetry all were used to examine the samples' ability to perform methanol electrocatalysis. When Mo is added to Ni with Co, the electrooxidation reaction's activation energy and electrode stability both increase. With a starting potential of 0.22 V, the maximum current density in the Ni Co Mo/CNF sample was 99.8 mA/cm2 at 0.6 V. To electrooxidize methanol, our electrocatalysts combine diffusion control with kinetic-limiting processes. This work has shown how to create an effective Ni Co Mo based methanol electrooxidation catalyst using a special technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号