首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The peristaltic flow of a Jeffrey fluid in a vertical porous stratum with heat transfer is studied under long wavelength and low Reynolds number assumptions. The nonlinear governing equations are solved using perturbation technique. The expressions for velocity, temperature and the pressure rise per one wave length are determined. The effects of different parameters on the velocity, the temperature and the pumping characteristics are discussed. It is observed that the effects of the Jeffrey number λ1, the Grashof number Gr, the perturbation parameter N = EcPr, and the peristaltic wall deformation parameter ϕ are the strongest on the trapping bolus phenomenon. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.  相似文献   

2.
The present paper investigates phenomena brought about into the classic peristaltic mechanism by inclusion of non-Newtonian effects through a porous space in a channel. The peristaltic motion of a second-order fluid through a porous medium was studied for the case of a planar channel with harmonically undulating extensible walls. The system of the governing nonlinear PDE is solved by using the perturbation method to second-order in dimensionless wavenumber. The analytic solution has been obtained in the form of a stream function from which the axial pressure gradient has been derived. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional force. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

3.
The MHD Couette flow of a viscous stratified fluid of large electrical conductivity with suction and injection at the plane boundaries is studied when the plane boundaries are maintained at different temperatures. The Oseen type governing equations are formulated using the method suggested by Greenspan for stratified fluids. Introducing the similarity variables, the linearised equations are solved to obtain the velocity and temperature distributions. The results show that the behaviour of velocity and temperature in fluids of large conductivity is different from the behaviour of velocity and temperature for fluids of finite conductivity. The effect of the magnetic field on the load capacity is investigated for the case when the width of the channel is small.  相似文献   

4.
This paper describes the fluid mechanics effects of mixed convective heat and mass transfer in an asymmetric channel with peristalsis. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The momentum, energy and concentration equations have been linearized under long wavelength approximation. The analytical solutions for temperature, concentration, velocity and stream function are obtained. The effects of various parameters such as local temperature Grashof number, local mass Grashof number and geometrical parameters on flow variables have been discussed numerically and explained graphically.  相似文献   

5.
This paper concerns with studying the steady and unsteady MHD micropolar flow and mass transfers flow with constant heat source in a rotating frame of reference in the presence chemical reaction of the first-order, taking an oscillatory plate velocity and a constant suction velocity at the plate. The plate velocity is assumed to oscillate in time with a constant frequency; it is thus assumed that the solutions of the boundary layer are the same oscillatory type. The governing dimensionless equations are solved analytically after using small perturbation approximation. The effects of the various flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. Numerical results of velocity profiles of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. The results show that there exists completely oscillating behavior in the velocity distribution.  相似文献   

6.
The purpose of this work is to study the effect of transverse sinusoidal suction velocity on the flow and mass transfer on free convective oscillatory viscous and optically thin grey fluid over a porous vertical plate in the presence of radiation. The flow becomes three-dimensional due to the variation of suction velocity in the transverse direction. Analytical expressions for velocity and temperature fields are obtained using the perturbation technique. The governing equations has been transformed to ordinary differential equations. Numerical solutions are obtained for different values of radiation parameter, Grashof number and Schmidt number. It is found that non-dimensional velocity decreases with increase of radiation parameter, increases with increase of Grashof number, decreases with increase of Schmidt number and non-dimensional temperature decreases with the increase of radiation parameter.  相似文献   

7.
Analytical solutions for heat and mass transfer by laminar flow of a Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously vertical permeable surface in the presence of a radiation, a first-order homogeneous chemical reaction and the mass flux are reported. The plate is assumed to move with a constant velocity in the direction of fluid flow. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Graphical results for velocity, temperature and concentration profiles of both phases based on the analytical solutions are presented and discussed.  相似文献   

8.
本文用线化理论分析了整体旋转的理想流体中有一个圆球沿旋转轴作匀速运动时流体的扰动,基于旋轴对称流动的假设导出了决定运动稳定性的扰动压力方程和扰动流函数方程.用简正模法分析了扰动流函数方程,得出了非平凡中性扰动的波数与波速必须满足的约束条件,并求出了扰动的精确表达式.文中得出结论,中性扰动共有三种可能的形式.  相似文献   

9.
This work investigates entropy generation in a steady flow of viscous incompressible fluids between two infinite parallel porous plates. The fluid temperature variation is due to asymmetric heating of the porous plates as well as viscous dissipation. Two different physical situations are discussed with their entropy generation profiles: (i) Couette flow with suction/injection and (ii) pressure-driven Poiseuille flow with suction/injection. In each case, closed form expressions for entropy generation number and Bejan number are derived in dimensionless form by using the expressions for velocity and temperature which are derived by solving the resulting momentum and energy equations by the method of undetermined coefficient. The effect of the governing parameters on velocity, temperature, entropy generation and Bejan number are extensively discussed with the help of graphs. It is interesting to remark that entropy generation number increases with suction on one porous plate while it decreases on the other porous plate with injection.  相似文献   

10.
The problem of peristaltic flow of a Newtonian fluid with heat transfer in a vertical asymmetric channel through porous medium is studied under long-wavelength and low-Reynolds number assumptions. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The analytical solution has been obtained in the form of temperature from which an axial velocity, stream function and pressure gradient have been derived. The effects of permeability parameter, Grashof number, heat source/sink parameter, phase difference, varying channel width and wave amplitudes on the pressure gradient, velocity, pressure drop, the phenomenon of trapping and shear stress are discussed numerically and explained graphically.  相似文献   

11.
A study of MHD mixed convection flow through porous space in the presence of a temperature dependent heat source in a vertical channel with radiation has been analyzed. The Rosseland approximation is considered in the modeling of the conduction radiation heat transfer and temperatures of the walls are assumed constants. The governing equations are expressed in non-dimensional form and the series solutions of coupled system of equations are constructed for velocity and temperature using homotopy analysis method (HAM). The effects of various involved parameters on the velocity and temperature field are shown and discussed. The coefficient of skin friction, and the rate of heat transfer coefficient are obtained and illustrated graphically.  相似文献   

12.
根据有旋特征线理论,设计出了沿程马赫数下降规律可控的轴对称基准流场,分析了基准流场的几何参数(前缘压缩角及中心体半径)的影响规律,发现选取较小的前缘压缩角和中心体半径有利于得到性能优良的基准流场;然后在设计状态Ma=6时研究了三种典型的马赫数下降规律对这种轴对称流场性能的影响。最后考虑了粘性的影响,并进行了粘性修正探索,结果表明,采用附面层位移厚度修正方法后,基准流场的壁面压力分布和无粘情况吻合良好。   相似文献   

13.
为渡水槽中波的模拟和传播提出了二维的数值模型.假设流动的流体为粘性、不可压缩的,并将Navier-Stokes方程和连续性方程作为控制方程.用标准的k-ε模型来模拟紊流流动;用交错网格的有限差分法,离散化Navier-Stokes方程;并用简化的标识和单元(SMAC)方法进行求解.使用活塞型波发生器生成并传播波;数值渡水槽的端部采用敞开式的边界条件.为了证明模型的有效性,进行了一些标准的试验,如顶盖驱动的方腔测试试验、单向的常速度场试验以及干燥河床上的溃坝试验.为了论证方法的性能及其精度,将所生成波的结果与已有波理论的结果进行比较.最后,采用群集技术(CT)生成网格,并提出最佳的网格生成条件.  相似文献   

14.
在一个由两块无限竖直平行板组成的管道中,充满着多孔的介质材料,使用Darcy模型(Brinkman模型的推广)的动量方程,连同能量方程,计算不可压缩、粘性、放/吸热流体在该管道中的不稳定自然对流,即Couette流动.流动是由于边界平板有不对称的加热,以及作加速运动所引起.选用合理的无量纲参数,对控制方程进行简化,通过Laplace变换进行解析求解,得到闭式的速度和温度分布曲线解,随后导出表面摩擦力和传热率.发现在竖直管道中的不同剖面,流体的流动及温度分布曲线随着时间而增加,且在运动平板附近更高.特别是,流体的速度和温度随着平板间距的增加而增加,但是,表面摩擦力和热传导率随着平板间距的增加而减小.  相似文献   

15.
A two-phase flow model, which solves the flow in the air and water simultaneously, has been employed to investigate both spilling and plunging breakers in the surf zone with a focus during wave breaking. The model is based on the Reynolds-averaged Navier–Stokes equations with the k–?k? turbulence model. The governing equations are solved using the finite volume method, with the partial cell treatment being implemented in a staggered Cartesian grid to deal with complex geometries. The PISO algorithm is utilised for the pressure–velocity coupling and the air–water interface is modelled by the interface capturing method via a high-resolution volume of fluid scheme. Numerical results are compared with experimental measurements and other numerical studies in terms of water surface elevations, mean flow and turbulence intensity, in which satisfactory agreement is obtained. In addition, water surface profiles, velocity and vorticity fields during wave breaking are also presented and discussed. It is shown that the present model is capable of simulating the wave overturning, air entrainment and splash-up processes.  相似文献   

16.
This work is focused on the mathematical modeling of three-dimensional Couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively, subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phases are obtained by solving the governing partial differential equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem.  相似文献   

17.
An analysis is presented for unsteady two-dimensional flow of a Maxwell fluid over a stretching surface in presence of a first order constructive/destructive chemical reaction. Using suitable transformations, the governing partial differential equations are converted to ordinary one and are then solved numerically by shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. Fluid velocity initially decreases with increasing unsteadiness parameter and concentration decreases significantly due to unsteadiness. The effect of increasing values of the Maxwell parameter is to suppress the velocity field. But the concentration is enhanced with increasing Maxwell parameter.  相似文献   

18.
The steady mixed convection boundary layer flow over a vertical surface immersed in an incompressible micropolar fluid is considered in this paper. Employing suitable similarity transformations, the governing partial differential equations are transformed into ordinary differential equations, and the transformed equations are solved numerically by the Keller-box method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity, angular velocity and temperature profiles. Both cases of assisting and opposing buoyant flows are considered. It is found that dual solutions exist for the assisting flow, besides that usually reported in the literature for the opposing flow. Moreover, in contrast to the classical boundary layer theory, the separation point of the boundary layer is found to be distinct from the point of vanishing skin friction.  相似文献   

19.
Analytical solutions for two-dimensional oscillatory flow on free convective-radiation of an incompressible viscous fluid, through a highly porous medium bounded by an infinite vertical plate are reported. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The resulting non-linear partial differential equations were transformed into a set of ordinary differential equations using two-term series. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. The free-stream velocity of the fluid vibrates about a mean constant value and the surface absorbs the fluid with constant velocity. Expressions for the velocity and the temperature are obtained. To know the physics of the problem analytical results are discussed with the help of graph.  相似文献   

20.
In the present paper the unsteady Couette flow and heat transfer of a dusty conducting fluid between two parallel plates with temperature dependent viscosity and thermal conductivity are studied. The fluid is acted upon by an exponential decaying pressure gradient and an external uniform magnetic field is applied. The governing coupled momentum and energy equations are solved numerically using finite differences. The effect of the variable viscosity and thermal conductivity of the fluid and the uniform magnetic field on the velocity and temperature fields for both the fluid and dust particles is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号