首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low molar mass hyperbranched polyesters were prepared by polycondensation of 1,1,1‐tris(hydroxymethyl)ethane and various dimethyl esters of aliphatic dicarboxylic acids in bulk. The usefulness of nontoxic bismuth salts as transesterification catalysts for these polycondensations was studied. The maximum conversion increased, and the reaction time decreased in the following sequence of increasing reactivity: dimethyl sebacate < adipate < glutarate < succinate. Regardless of the monomer combination, gelation occurred at conversions > 91.5%. The hyperbranched structure was proven by 1H NMR spectroscopy and the absence of cyclic elements by MALDI‐TOF mass spectrometry. Quantitative acylation of all CH2OH groups was achieved with an excess of acetic anhydride or methycrylic anhydride. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 231–238, 2009  相似文献   

2.
Aliphatic polyesters bearing pendant alkyne groups were successfully prepared by step‐growth polymerization of different building blocks such as adipic acid and succinic acid in combination with an acetylene‐based diol, 2‐methyl‐2‐propargyl‐1,3‐propanediol, besides 1,4‐butanediol and ethylene glycol. It was demonstrated that the alkyne groups survive the high reaction temperatures (200 °C) in the presence of a radical inhibitor. The alkyne loading has been tuned by the ratio of the different monomers used, up to 25 mol % of alkyne groups. Subsequently, the alkyne groups have been reacted with azides by the copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction, a popular type of “click” chemistry. “Click” reactions have been performed quantitatively in the presence of benzyl azide and azide‐terminated poly(ethylene glycol), yielding brush copolymers in the latter case. Kinetic investigations about this click reaction have been performed by means of on‐line Fourier transform mid‐infrared spectroscopy, which was reported for the first time in the field of the click chemistry research. A whole range of functionalized polyesters, based on poly(ethylene succinate) and poly(butylene adipate), is available, the properties of which can be tailored by choosing the appropriate azide compound. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6552–6564, 2008  相似文献   

3.
At first, theoretical aspects of “a2+b4” polycondensations (meaning polycondensations of difunctional and tetrafunctional monomers) are discussed and compared with what is known about “a2+b3” polycondensations. The following review of experimental results is subdivided into three sections. First, syntheses of hyperbranched polyethers and polyesters by polycondensations based on equimolar feed ratios will be reported. Second, kinetically controlled (i.e., irreversible) syntheses of multicyclic polymers using equifunctional feed ratios (i.e., a2/b4 ratios of 2:1) will be described. In the third section, syntheses of multicyclic polymers via thermodynamically controlled (reversible) “a2+b4” polycondensations will be discussed. Characteristic for these polycondensations are again equifunctional feed ratios and metal alkoxides as “a2” or “b4” monomers, which catalyze rapid equilibration reactions. Finally, potential applications of the new polymers will shortly be mentioned. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1971–1987, 2009  相似文献   

4.
Click Cu(I)‐catalyzed polymerizations of diynes that contained ester linkages and diazides were performed to produce polyesters (click polyesters) of large molecular weights [(~1.0–7.0 ) × 104], that contained main‐chain 1,4‐disubstitued triazoles in excellent yields. Incorporation of triazole improved the thermal properties and magnified the even‐odd effect of the methylene chain length. We also found that, by changing the positions of the triazole rings, the thermal properties of the polyesters could be controlled. The use of in situ azidation was a safe reaction, as explosive diazides are not used. In addition, the microwave heating was found to accelerate the polymerization rates. This is the first study that has applied click chemistry for the synthesis of a series of polyesters. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4207–4218, 2010  相似文献   

5.
As a convenient alternative to the classical melt polycondensation the one‐pot solution polycondensation of suitable AB2 monomers under mild conditions has been successfully adapted to hyperbranched all‐aromatic polyester with phenol terminal groups. The polymerization was performed in solution at room temperature directly using commercially available 3,5‐dihydroxybenzoic acid as monomer and 4‐(dimethylamino) pyridinium 4‐tosylate as catalyst to suppress the formation of N‐acylurea. Different carbodiimides as coupling agents were investigated to find the optimal esterification conditions. The polymers have been characterized extensively and were compared with their well‐known analogs synthesized in melt. The characterization was carried out by NMR spectroscopy, size exclusion chromatography, and asymmetric flow‐field flow fractionation as an alternative separation technique for multifunctional polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5158–5168, 2009  相似文献   

6.
Hyperbranched polyesters are among the most common hyperbranched polymers. One of the interesting features of hyperbranched polyesters is that they contain unreacted hydroxyl and carboxylic acid groups at the linear and terminal structural units, which can be postmodified to adjust thermal, solubility, or mechanical properties, or to prepare core–shell type architectures. This article reports on the synthesis of a novel class of hyperbranched polyesters via an A2 + B3 type Baylis–Hillman polymerization of 2,6‐pyridinedicarboxaldehyde and trimethylolpropane triacrylate. Baylis–Hillman polymerization generates highly functional polyesters that contain not only unreacted aldehyde and/or acrylate groups at the linear and terminal structural units but also chemically orthogonal vinyl and hydroxyl groups along the polymer backbone. Using 3‐hydroxyquinuclidine as the catalyst, hyperbranched polymers with number‐average molecular weights up to 7500 g/mol and degrees of branching up to 0.81 were obtained. To demonstrate the versatility of these hyperbranched polyesters to act as platforms for further derivatization, the orthogonal postpolymerization modification of the hydroxyl, vinyl, and pyridine functional moieties with phenyl isocyanate, methyl‐3‐mercaptopropionate, and methyl iodide is presented. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

7.
In this work, pristine multiwalled carbon nanotubes (MWNTs) were functionalized by utilizing the free radicals generated through Bergman cyclization of enediyne containing compounds 3 . Polyesters were subsequently grafted from the surface of MWNTs through ring‐opening polymerization of ε‐caprolactone or lactide initiated by free hydroxy groups generated after hydrolysis of ester groups. Functionalized MWNTs were characterized with a variety of techniques, including TGA, NMR, IR, UV–vis, TEM, and Raman spectroscopy. After surface modification, MWNTs showed good solubility in common organic solvents and polymer solutions. Fabrication of MWNTs polymer nanocomposites was revealed through electrospinning with polycaprolactone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
9.
Heterotelechelic polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly (methyl acrylate) (PMA), containing both azide and triisopropylsilyl (TIPS) protected acetylene end groups, were prepared in good control (Mw/Mn ≤ 1.24) by atom transfer radical polymerization (ATRP). The end groups were independently applied in two successive “click” reactions, that is: first the azide termini were functionalized and, after deprotection, the acetylene moieties were utilized for a second conjugation step. As a proof of concept, PS was consecutively functionalized with propargyl alcohol and azidoacetic acid, as confirmed by MALDI‐ToF MS. In addition, the same methodology was employed to modularly build up an ABC type triblock terpolymer. Size exclusion chromatography measurements demonstrated first coupling of PtBA to PS and, after the deprotection of the acetylene functionality on PS, connection of PMA, yielding a PMA‐b‐PS‐b‐PtBA triblock terpolymer. The reactions were driven to completion using a slight excess of azide functionalized polymers. Reduction of the residual azide groups into amines allowed easy removal of this excess of polymer by column chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2913–2924, 2007  相似文献   

10.
Degradable polyester‐based star polymers with a high level of functionality in the arms were synthesized via the “arms first” approach using an acetylene‐functional block copolymer macroinitiator. This was achieved by using 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate to initiate the ring‐opening polymerization (ROP) of caprolactone monomer followed by an atom transfer radical polymerization (ATRP) of a protected acetylene monomer, (trimethylsilyl)propargyl methacrylate. The hydroxyl end‐group of the resulting block copolymer macroinitiator was subsequently crosslinked under ROP conditions using a bislactone monomer, 4,4′‐bioxepanyl‐7,7′‐dione, to generate a degradable core crosslinked star (CCS) polymer with protected acetylene groups in the corona. The trimethylsilyl‐protecting groups were removed to generate a CCS polymer with an average of 1850 pendent acetylene groups located in the outer block segment of the arms. The increased functionality of this CCS polymer was demonstrated by attaching azide‐functionalized linear polystyrene via a copper (I)‐catalyzed cycloaddition reaction between the azide and acetylene groups. This resulted in a CCS polymer with “brush‐like” arm structures, the grafted segment of which could be liberated via hydrolysis of the polyester star structure to generate molecular brushes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1485–1498, 2009  相似文献   

11.
The development of DSM's Hybrane® hyperbranched poly(ester amides) is described. The monomer (1) for the hyperbranched polyester is obtained from the reaction of a cyclic anhydride with diisopropanol amine, yielding a tertiairy amide with one COOH and two OH groups. Polycondensation takes place via an oxazolinium intermediate in bulk at relatively mild conditions in the absence of catalyst. The reaction has been scaled up to ton scale. By varying and combining anhydrides, and modification with several types of end groups, a large variety of structures with concomitant properties and industrial applications has been realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3110–3115, 2004  相似文献   

12.
Hyperbranched aliphatic polyesters of 2,2′-bis-(hydroxymethyl) propanoic acid and hyperbranched aliphatic polyamides obtained from new carboxy- and amino-functionalized caprolactams were studied by NMR spectroscopy and MALDI-TOF mass spectrometry. Ring-chain equilibria taking place through intramolecular hydroxy-ester, carboxy-amide or amine-amide interchanges and leading to the formation of cyclic branches or end-groups were found to exert a predominant influence on the molar mass of these hyperbranched polymers. A number of intra- or intermolecular side reactions, such as the formation of ethers in polyesters and the formation of anhydrides, imides, amidines and secondary amines in polyamides were also detected and resulted in polymer crosslinking on prolonged heating. The existence of such ring-chain equilibria and side-reactions make the control of hyperbranched polymer structure much more difficult than generally accepted.  相似文献   

13.
A convenient and cost‐effective strategy for synthesis of hyperbranched poly(ester‐amide)s from commercially available dicarboxylic acids (A2) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB2‐type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB2 intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester‐amide)s bearing multi‐hydroxyl end‐groups. The FTIR and 1H NMR spectra indicated that the polymerization proceeded in the proposed way. The DBs of the resulting polymers were confirmed by a combination of inverse‐gated decoupling 13C NMR, and DEPT‐135 NMR techniques. The DBs of the hyperbranched poly(ester‐amide)s were in the range of 0.44–0.73, depending on the structure of the monomers used. The hyperbranched polymers exhibited moderate molecular weights with relatively broad distributions determined by SEC. All the polymers displayed low inherent viscosity (0.11–0.25 dL/g) due to the branched nature. Structural and end‐group effects on the thermal properties of the hyperbranched polymers were investigated using DSC. The thermogravimetric analysis revealed that the resulting polymers exhibit reasonable thermal stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5077–5092, 2008  相似文献   

14.
A pure unsaturated cyclic ester, 6,7‐dihydro‐2(3H)‐oxepinone (DHO2), was prepared by a new synthetic route. The copolymerization of DHO2 with ?‐caprolactone (?CL) was initiated by aluminum isopropoxide [Al(OiPr)3] at 0 °C as an easy way to produce unsaturated aliphatic polyesters with nonconjugated C?C double bonds in a controlled manner. The chain growth was living, as certified by the agreement between the experimental molecular weight at total monomer conversion and the value predicted from the initial monomer/initiator molar ratio. The polydispersity was reasonably low (weight‐average molecular weight/number‐average molecular weight ≤ 1.2). The homopolymerization of DHO2 was, however, not controlled because of fast intramolecular transesterification. Copolymers of DHO2 and ?CL were quantitatively oxidized with the formation of epoxides containing chains. The extent of the epoxidation allowed the thermal properties and thermal stability of the copolyesters to be modulated. The epoxidized copolyesters were successfully converted into thioaminated chains, which were then quaternized into polycations. No degradation occurred during the chemical modification. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2286–2297, 2002  相似文献   

15.
The star graft copolymers composed of hyperbranched polyglycerol (HPG) as core and well defined asymmetric mixed “V‐shaped” identical polystyrene (PS) and poly(tert‐butyl acrylate) as side chains were synthesized via the “click” chemistry. The V‐shaped side chain bearing a “clickable” alkyne group at the conjunction point of two blocks was first prepared through the combination of anionic polymerization of styrene (St) and atom transfer radical polymerization of tert‐butyl acrylate (tBA) monomer, and then “click” chemistry was conducted between the alkyne groups on the side chains and azide groups on HPG core. The obtained star graft copolymers and intermediates were characterized by gel permeation chromatography (GPC), GPC equipped with a multiangle laser‐light scattering detector (GPC‐MALLS), nuclear magnetic resonance spectroscopy and fourier transform infrared. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1308–1316, 2009  相似文献   

16.
Photoactive hyperbranched benzylidene liquid‐crystalline polyester (PAHBP) and photoactive linear benzylidene liquid‐crystalline polyester (PALBP) were synthesized by solution polycondensation with pyridine as an acid acceptor. PAHBP and PALBP were thoroughly characterized with Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrophotometry, fluorescent spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. Both polymers exhibited nematic mesophase. The glass‐transition temperature and liquid‐crystalline isotropic temperature of PAHBP were higher than those of PALBP. During photolysis under ultraviolet light, both polymers underwent an intermolecular photocycloaddition reaction, and the photoactivity of PAHBP was faster than that of PALBP; this was further confirmed by photoviscosity studies. PALBP and PAHBP were fluorescent in nature. An increase in the fluorescence intensity with the time of ultraviolet‐light irradiation was observed for both PAHBP and PALBP. The rate of increase in the fluorescence intensity of the linear analogue (PALBP) was higher than that of the hyperbranched polymer (PAHBP). This behavior could be attributed to the attainment of better planarity in the case of the linear one but not in the case of PAHBP because of the rapid crosslinking of PAHBP leading to an irregular architecture. This behavior was further confirmed by the calculation of the steric energy from corresponding model compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3986–3994, 2006  相似文献   

17.
A series of polycondensation was conducted with the purpose to optimize the reaction conditions for the polycondensation of silylated 2,3-isopropylidene D -threitol with a dicarboxylic acid dichloride. Polycondensation in o-dichlorobenzene or 1-chloronaphthalene at 180–230°C were found to be most satisfactory. Trifluoroacetic acid/H2O allow an easy cleavage of the isopropylidene group without hydrolysis of the polyester. Ten cholesteric copolyesters were prepared by polycondensation of mixtures of silylated methylhydroquinone and isosorbide, isomannide, or 2,3-isopropylidene threitol with the dichloride of 1,10-bis(4′-carboxyphenoxy)decane. All these copolyesters form a broad cholesteric phase above 200°C. The copolyesters containing 5 or 10 mol % of a sugar diol display a blue Grandjean texture. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
19.
This article describes the synthesis of a new glycerol‐based AB2 type monomer—ethyl{3‐[2‐hydroxy‐1‐(hydroxymethyl)ethoxy]propyl}thioacetate ( 4 ) and its application for the preparation of hyperbranched polyesters. The polycondensation of 4 has been performed over a wide range of catalysts and reaction conditions leading to polymers containing solely primary hydroxyl groups. The polycondensation progress has been monitored by means of 1H NMR. The degree of branching of the polymers showed to be in the range of 0.5 ± 0.03. The obtained polyesters easily undergo hydrolysis or alcoholysis and may be of interest as recycled materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3860–3868, 2009  相似文献   

20.
Novel acid‐terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid‐catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white‐spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans‐esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol‐functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3964–3974  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号