首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper illustrates the using of orthogonal polynomials to modify the Adomian decomposition method. The method of employing Legendre polynomials to improve the Adomian decomposition method is presented here and compared to the method of using Chebyshev polynomials. The presented modified Adomian decomposition method is validated through an example and advantage as well as efficiency of this method is verified through investigating and comparing the results. In this paper, it is concluded that both orthogonal polynomials: Chebyshev and Legendre polynomials can be successfully used for the Adomian decomposition method and comparatively the Chebyshev expansion provides the better estimation.  相似文献   

2.
In this article, a general formulation for the fractional-order Legendre functions (FLFs) is constructed to obtain the solution of the fractional-order differential equations. Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. Therefore, an efficient and reliable technique for the solution of them is too important. For the concept of fractional derivative we will adopt Caputo’s definition by using Riemann–Liouville fractional integral operator. Our main aim is to generalize the new orthogonal functions based on Legendre polynomials to the fractional calculus. Also a general formulation for FLFs fractional derivatives and product operational matrices is driven. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   

3.
Shifted Legendre polynomial functions are employed to solve the linear-quadratic optimal control problem for lumped parameter system. Using the characteristics of the shifted Legendre polynomials, the system equations and the adjoint equations of the optimal control problem are reduced to functional ordinary differential equations. The solution of the functional differential equations are obtained in a series of the shifted Legendre functions. The operational matrix for the integration of the shifted Legendre polynomial functions is also introduced in the simulation step in order to simplify the computational procedure. An illustrative example of an optimal control problem is given, and the computational results are compared with those of the exact solution. The proposed method is effective and accurate.  相似文献   

4.
主要研究勒让德多项式与契贝谢夫多项式之间的关系的性质,利用生成函数和函数级数展开的方法,得出了勒让德多项式与契贝谢夫多项式之间的一个重要关系,这对勒让德多项式与契贝谢夫多项式的研究有一定的推动作用.  相似文献   

5.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   

6.
In this paper, we state and prove a new formula expressing explicitly the integratives of Bernstein polynomials (or B‐polynomials) of any degree and for any fractional‐order in terms of B‐polynomials themselves. We derive the transformation matrices that map the Bernstein and Legendre forms of a degree‐n polynomial on [0,1] into each other. By using their transformation matrices, we derive the operational matrices of integration and product of the Bernstein polynomials. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, shifted Legendre polynomials will be used for constructing the numerical solution for a class of multiterm variable‐order fractional differential equations. In the proposed method, the shifted Legendre operational matrix of the fractional variable‐order derivatives will be investigated. The fundamental problem is reduced to an algebraic system of equations using the constructed matrix and the collocation technique, which can be solved numerically. The error estimate of the proposed method is investigated. Some numerical examples are presented to prove the applicability, generality, and accuracy of the suggested method.  相似文献   

10.
勒让德多项式的性质与契贝谢夫多项式间的关系   总被引:4,自引:1,他引:3  
主要讨论了著名的勒让德多项式的一些性质,同时得到勒让德多项式与契贝谢夫多项式之间的一些关系  相似文献   

11.
讨论了 Fibonacci数与 Legendre多项式之间的关系 ,得到了一些有趣的恒等式 .  相似文献   

12.
Summary. We present an approximate-inertial-manifold-based postprocess to enhance Chebyshev or Legendre spectral Galerkin methods. We prove that the postprocess improves the order of convergence of the Galerkin solution, yielding the same accuracy as the nonlinear Galerkin method. Numerical experiments show that the new method is computationally more efficient than Galerkin and nonlinear Galerkin methods. New approximation results for Chebyshev polynomials are presented. Received January 5, 1998 / Revised version received September 7, 1999 / Published online June 8, 2000  相似文献   

13.
In this paper, an efficient modification of the Adomian decomposition method by using Legendre polynomials is presented. Both linear and non-linear models are suited for the proposed method. Some examples here in are solved by using this method and this paper will demonstrate that the results are more reliable and efficient.  相似文献   

14.
Ever since Legendre introduced the polynomials that bear his name in 1785, they have played an important role in analysis, physics and number theory, yet their algebraic properties are not well-understood. Stieltjes conjectured in 1890 how they factor over the rational numbers. In this paper, assuming Stieltjes’ conjecture, we formulate a conjecture about the Galois groups of Legendre polynomials, to the effect that they are “as large as possible,” and give theoretical and computational evidence for it.  相似文献   

15.
In this paper, a Legendre wavelet collocation method for solving a class of time-fractional order telegraph equation defined by Caputo sense is discussed. Fractional integral formula of a single Legendre wavelet in the Riemann–Liouville sense is derived by means of shifted Legendre polynomials. The main characteristic behind this approach is that it reduces equations to those of solving a system of algebraic equations which greatly simplifies the problem. The convergence analysis and error analysis of the proposed method are investigated. Several examples are presented to show the applicability and accuracy of the proposed method.  相似文献   

16.
In this paper, the alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear multi-order fractional differential equations (FDEs). First, the operational matrix of fractional integration of an arbitrary order and the product operational matrix are derived for ALPs. These matrices together with the spectral Tau method are then utilized to reduce the solution of the mentioned equations into the one of solving a system of nonlinear algebraic equations with unknown ALP coefficients of the exact solution. The fractional derivatives are considered in the Caputo sense and the fractional integration is described in the Riemann-Liouville sense. Numerical examples illustrate that the present method is very effective for linear and nonlinear multi-order FDEs and high accuracy solutions can be obtained only using a small number of ALPs.  相似文献   

17.
In this paper, a method based on using hybrid functions of block-pulse and Legendre polynomials for finding the optimal solution of systems with delay in state and control variables is presented. The state-control parameterization method is used to convert the original optimal control problem with time delays into an optimization problem. This method does not require operational matrices of delay, product and integration of hybrid functions for obtaining this goal. The validity of this method is examined by illustrative examples.  相似文献   

18.
该文以再生核理论为基础,用移位Legendre多项式作为基函数构造了一个新的再生核空间,并给出了该空间下的再生核函数.与经典的再生核函数有所不同的是该空间下的再生核函数不再是分段函数,因此可以减小分数阶算子作用在核函数上时的计算量,使近似解更为精确.数值算例表明该方法的有效性.  相似文献   

19.
A Legendre polynomial-based spectral technique is developed to be applicable to solving eigenvalue problems which arise in linear and nonlinear stability questions in porous media, and other areas of Continuum Mechanics. The matrices produced in the corresponding generalised eigenvalue problem are sparse, reducing the computational and storage costs, where the superimposition of boundary conditions is not needed due to the structure of the method. Several eigenvalue problems are solved using both the Legendre polynomial-based and Chebyshev tau techniques. In each example, the Legendre polynomial-based spectral technique converges to the required accuracy utilising less polynomials than the Chebyshev tau method, and with much greater computational efficiency.  相似文献   

20.
In this article, we develop a direct solution technique for solving multi-order fractional differential equations (FDEs) with variable coefficients using a quadrature shifted Legendre tau (Q-SLT) method. The spatial approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre polynomials themselves is proved. Extension of the tau method for FDEs with variable coefficients is treated using the shifted Legendre–Gauss–Lobatto quadrature. Numerical results are given to confirm the reliability of the proposed method for some FDEs with variable coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号