首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Articular cartilage is a low-friction, load-bearing tissue located at joint surfaces. The extracellular matrix (ECM) of cartilage consists of a fibrous collagen network, which is prestressed by the osmotic swelling pressure exerted by negatively charged proteoglycan (PG) aggregates embedded in the collagen network. The major PG is the bottlebrush-shaped aggrecan, which forms complexes with linear hyaluronic acid (HA) chains. We quantify microscopic and macroscopic changes resulting from self-assembly between aggrecan and HA using a complementary set of physical measurements to determine structure and interactions by combining scattering techniques, including small-angle X-ray scattering, small-angle neutron scattering, and dynamic light scattering with macroscopic osmotic pressure measurements. It is demonstrated that the osmotic pressure that defines the load-bearing ability of cartilage is primarily governed by the main macromolecular components (aggrecan and collagen) of the ECM. Knowledge of the interactions between the macromolecular components of cartilage ECM is essential to understand biological function and to develop successful tissue engineering strategies for cartilage repair. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Langevin dynamics simulations were conducted to study the collapse of grafted partially charged 4-arm star chains onto the oppositely charged grafting electrode in the presence of trivalent salt coions. Simulation results reveal that the average charge fraction of the grafted star chains and the salt concentration play critical roles in the competitive adsorption of charged monomers and trivalent salt coions onto the oppositely charged electrode. For grafted star chains with relatively high charge fraction, charged monomers are the dominant species collapsing on the oppositely charged electrode with the emergence of charge reversal on the grafting electrode. At a low charge fraction such that the total amount of charges on a grafted star molecule is comparable to that of a trivalent salt coion, trivalent salt coions absorb more strongly onto the electrode than grafted stars even at very low salt concentration. It is found that at relatively low charge fraction of star chains, the addition of trivalent salt coions does not lead to charge overcompensation of the surface charges on the grafting electrode. The stretching of star brushes under an electric field in the presence of trivalent salt coions was also briefly investigated.  相似文献   

3.
We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.  相似文献   

4.
Adsorption of DNA molecules on mica, a highly negatively charged surface, mediated by divalent or trivalent cations is considered. By analyzing atomic force microscope (AFM) images of DNA molecules adsorbed on mica, phase diagrams of DNA molecules interacting with a mica surface are established in terms of concentrations of monovalent salt (NaCl) and divalent (MgCl2) or multivalent (spermidine, cobalt hexamine) salts. These diagrams show two transitions between nonadsorption and adsorption. The first one arises when the concentration of multivalent counterions is larger than a limit value, which is not sensitive to the monovalent salt concentration. The second transition is due to the binding competition between monovalent and multivalent counterions. In addition, we develop a model of polyelectrolyte adsorption on like-charged surfaces with multivalent counterions. This model shows that the correlations of the multivalent counterions at the interface between DNA and mica play a critical role. Furthermore, it appears that DNA adsorption takes place when the energy gain in counterion correlations overcomes an energy barrier. This barrier is induced by the entropy loss in confining DNA in a thin adsorbed layer, the entropy loss in the interpenetration of the clouds of mica and DNA counterions, and the electrostatic repulsion between DNA and mica. The analysis of the experimental results provides an estimation of this energy barrier. We then discuss some important issues, including DNA adsorption under physiological conditions.  相似文献   

5.
Using a surface force balance we demonstrate unambiguously that high-molecular-weight poly(ethylene oxide) (PEO) does not adsorb onto mica from purified water with no added salt, a surprising observation in view of its strong adsorption on mica from aqueous 0.1 M KNO3 solution. Analysis of the force profiles, together with the known complexation of PEO with metal ions, suggests that the polymer attachment to the negatively charged surface is mediated by the hydrated potassium ion acting as a ligand.  相似文献   

6.
We analyze the adsorption of strongly charged polyelectrolytes onto weakly charged surfaces in divalent salt solutions. We include short-range attractions between the monomers and the surface and between condensed ions and monomers, as well correlations among the condensed ions. Our results are compared with the adsorption in monovalent salt solutions. Different surface charge densities (σ), and divalent (m) and monovalent (s) salt concentrations are considered. When the Wigner-Seitz cells diameter (2R) is larger than the length of the rod, the maximum amount of adsorption scales like nmax ∼ σ4/3 in both monovalent and divalent solutions. For homogeneously charged surfaces, the maximum adsorption occurs at s* ∼ σ2 when s* > ϕ, where ϕ is the monomer concentration, the counterpart for divalent salt solution, m* roughly scales as σ2.2 when m* > ϕ. The effective surface charge density has a maximum absolute value at m′ < m*. A discrete surface charge distribution and short-range attractions between monomers and surface charge groups can greatly enhance surface charge inversion especially for high salt concentration. The critical salt concentration for adsorption in divalent salt solution roughly scales as mcbσ1.9, where b is the distance between two neighboring charged monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3642–3653, 2004  相似文献   

7.
The adsorption of charged dendrigraft (arborescent) copolymers of different generations (G1, G2) and side chain molecular weights (Mn ≈ 5000 or 30,000) on silica surfaces in water, was monitored by the quartz crystal microbalance dissipation (QCM-D) technique. The topology of the adsorbed copolymers on mica was also investigated by AFM measurements. The PS-P2VP [polystyrene-graft-poly(2-vinylpyridine)] copolymers readily interact with a silica or mica surface and form a thin layer in acidic water (pH 2) due to the positively charged P2VP shell branches. The adsorbed arborescent PS-P2VP films expanded and collapsed reversibly in water upon cycling between low and high pH values, respectively. As the generation number increased, the density of copolymer molecules adsorbed onto the surface decreased due to stronger intermolecular electrostatic repulsions. The adsorption density also decreased significantly for copolymers with longer P2VP chains due to their more expanded conformation on the surface.  相似文献   

8.
Adsorption of colloidal particles presents an interesting alternative to the modification of surfaces using covalent coupling or physisorption of molecules. However, to tailor the properties of these materials full control over the effective particle-substrate interactions is required. We present a systematic investigation of the adsorption of spherical polyelectrolyte brushes (SPB) onto polyelectrolyte multilayers (PEM). A brush layer grafted from colloidal particles allows the incorporation of various functional moieties as well as the precise adjustment of their adsorption behaviour. In the presence of oppositely charged surfaces the amount of adsorbed SPB monotonically increases with the ionic strength, whereas equally charged substrates efficiently prevent colloidal attachment below a threshold salt concentration. We found that the transition from the osmotic to the salted brush regime at approximately 100 mM coincided with a complete loss of substrate selectivity. In this regime of high ionic strength, attractive secondary interactions become dominant over electrosteric repulsion. Due to the soft polyelectrolyte corona a surface coverage exceeding the theoretical jamming limit could be realized. Both the adsorption kinetics and the resulting thin film morphologies are discussed. Our study opens avenues for the production of two-dimensional arrays and three-dimensional multilayered structures of SPB particles.  相似文献   

9.
The swelling of dextran gels (Sephadex) in salt solutions with a water activity of 0.937, compared with the swelling in pure water, exhibited anion specificity as evidenced by an increased swelling ratio in the following order: Na2SO4 < H2O < NaCl < NaSCN. The swelling ratio showed a good linear correlation with the osmotic pressure of dextran (500 kD) in these solutions. The salt‐concentration difference (imbalance) between the polymer‐solution side of the membrane and the polymer‐free permeate side during the osmotic‐pressure measurements positively correlated with the effect of the salt on the polymer osmotic pressure. These phenomena conform to Hofmeister‐type (or lyotropic) behavior. The diminishing augmentation of dextran osmotic pressure and the change in the salt‐concentration imbalance with rising NaSCN concentration imply a positive preferential interaction and adsorption of the salt onto the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2740–2750, 2001  相似文献   

10.
Surfaces coated with poly(ethylene oxide) containing nonionic polymers are of interest in medical applications due to, among other things, the low adsorption of proteins on such surfaces. In this paper we have studied the interfacial properties of surfaces coated with PEO by measuring the forces acting between two such surfaces in water and across a protein solution as well as between one such surface and a surface carrying adsorbed proteins. One type of surface coating was a graft copolymer of poly(ethylene imine) and poly(ethylene oxide) where the cationic poly(ethylene imine) group anchored the polymer to negatively charged mica surfaces. Three different ways to prepare this coating was used and compared. It was found that this coating was not stable in the presence of lysozyme, a small positively charged protein, when the PEO graft density was low. The other type of coating was obtained by adsorbing ethyl(hydroxyethyl)-cellulose onto hydrophobised mica surfaces. The driving force for adsorption is in this case the hydrophobic interaction between nonpolar segments of the polymer and the surface. The EHEC coating was stable in the presence of lysozyme and the interactions between adsorbed layers of lysozyme and EHEC coated surfaces are purely repulsive due to long-range steric forces.  相似文献   

11.
Coarse-grained molecular dynamics simulations are performed to understand the behavior of diblock polyelectrolytes in solutions of divalent salt by studying the conformations of chains over a wide range of salt concentrations. The polymer molecules are modeled as bead spring chains with different charged fractions and the counterions and salt ions are incorporated explicitly. Upon addition of a divalent salt, the salt cations replace the monovalent counterions, and the condensation of divalent salt cations onto the polyelectrolyte increases, and the chains favor to collapse. The condensation of ions changes with the salt concentration and depends on the charged fraction. Also, the degree of collapse at a given salt concentration changes with the increasing valency of the counterion due to the bridging effect. As a quantitative measure of the distribution of counterions around the polyelectrolyte chain, we study the radial distribution function between monomers on different polyelectrolytes and the counterions inside the counterion worm surrounding a polymer chain at different concentrations of the divalent salt. Our simulation results show a strong dependence of salt concentration on the conformational properties of diblock copolymers and indicate that it can tune the self-assembly behaviors of such charged polyelectrolyte block copolymers.  相似文献   

12.
In this work, slightly charged thermo‐responsive gels in the presence of salt at concentrations close to physiological conditions have been simulated within a coarse‐grained model widely used in the last decade. These simulations allow differentiate charge and salt effects, which are antagonist and coupled in many real systems because the degree of ionization might depend on the electrolyte concentration. An analysis in terms of the different contributions to osmotic pressure is also presented, which highlights the role played by excluded volume effects. In addition, our results also permit us to test some predictions based on the ideal Donnan equilibrium, a common assumption made to justify the swelling behavior of gels and microgels in the presence of salt. More specifically, simulations show that, for the slightly charged gels simulated here, such an assumption overestimates the concentration of salt inside collapsed gels and underestimates the excess of osmotic pressure associated to the additional electrolyte. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1403–1411  相似文献   

13.
Using a surface force balance, we have measured the normal and shear forces between mica surfaces across aqueous caesium salt solutions (CsNO(3) and CsCl) up to 100 mM concentrations. In contrast to all other alkali metal ions at these concentrations, we find no evidence of hydration repulsion between the mica surfaces on close approach: the surfaces appear to be largely neutralized by condensation of the Cs ions onto the charged lattice sites, and are attracted on approach into adhesive contact. The contact separation at adhesion indicates that the condensed Cs ions protrude by 0.3 +/- 0.2 nm from each surface, an observation supported both by the relatively weak adhesion energies between the surfaces, and the relatively weak frictional yield stress when they are made to slide past each other. These observations show directly that the hydration shells about the Cs(+) ions are removed as the ions condense into the charged surface lattice. This effect is attributed to the low energies-resulting from their large ionic radius-required for dehydration of these ions.  相似文献   

14.
Colloid particle deposition was applied to characterize fibrinogen (Fb) monolayers on mica, which were produced by controlled adsorption under diffusion transport. By adjusting the time of adsorption and the bulk Fb concentration, monolayers of desired surface concentration were obtained. The surface concentration of Fb was determined directly by AFM enumeration of single molecules adsorbed over the substrate surface. It was proven that Fb adsorbed irreversibly on mica both at pH 3.5 and at pH 7.4 with the rate governed by bulk transport. The electrokinetic properties of Fb monolayers produced in this way were studied using the streaming potential method. The dependence of the apparent zeta potential of Fb monolayers was determined as a function of the coverage. It was shown that for pH 3.5 the initial negative zeta potential of the mica substrate was converted to positive for Fb coverage exceeding 0.16. On the other hand, for pH 7.4, the zeta potential of a Fb-covered mica remained negative for the entire coverage range. The charge distribution in Fb monolayers was additionally studied using the colloid deposition method, in which negatively and positively charged polystyrene latex particles (ca. 800 nm in diameter) were used. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential was observed. Results of these experiments were quantitatively interpreted in terms of the fluctuation theory assuming that adsorption sites consisted of two and three Fb molecules, for pH 3.5 and 7.4, respectively. These results suggested that for pH 7.4, the distribution of charge on Fb molecules was heterogeneous, characterized by the presence of positive patches, whereas the average zeta potential was negative, equal to -19 mV. The utility of the colloid deposition method for studying Fb monolayers was further demonstrated in deposition experiments involving positive latex particles. It was shown that for a rather broad range of fibrinogen coverage, both the positive and the negative latex particles can adsorb on surfaces covered by Fb, which behaved, therefore, as superadsorbing surfaces. It was also concluded that the colloid deposition method can be used to determine the Fb bulk concentration for the range inaccessible for other methods.  相似文献   

15.
The adsorption of a biologically important glycoprotein, mucin, and mucin-chitosan complex layer formation on negatively charged surfaces, silica and mica, have been investigated employing ellipsometry, the interferometric surface apparatus, and atomic force microscopy techniques. Particular attention has been paid to the effect of an anionic surfactant sodium, dodecyl sulfate (SDS), with respect to the stability of the adsorption layers. It has been shown that mucin adsorbs on negatively charged surfaces to form highly hydrated layers. Such mucin layers readily associate with surfactants and are easily removed from the surfaces by rinsing with solutions of SDS at concentrations > or =0.2 cmc (1 cmc SDS in 30 mM NaCl is equal to 3.3 mM). The mucin adsorption layer is negatively charged, and we show how a positively charged polyelectrolyte, chitosan, associates with the preadsorbed mucin to form mucin-chitosan complexes that resist desorption by SDS even at SDS concentrations as high as 1 cmc. Thus, a method of mucin layer protection against removal by surfactants is offered. Further, we show how mucin-chitosan multilayers can be formed.  相似文献   

16.
Structural properties of the acidic proline rich protein PRP-1 of salivary origin in bulk solution and adsorbed onto a negatively charged surface have been studied by Monte Carlo simulations. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. In addition to PRP-1, some mutants were considered to assess the role of the interactions in the systems. Contrary to polyelectrolytes, the protein has a compact structure in salt-free bulk solutions, whereas at high salt concentration the protein becomes more extended. The protein adsorbs to a negatively charged surface, although its net charge is negative. The adsorbed protein displays an extended structure, which becomes more compact upon addition of salt. Hence, the conformational response upon salt addition in the adsorbed state is the opposite as compared to that in bulk solution. The conformational behavior of PRP-1 in bulk solution and at charged surfaces as well as its propensity to adsorb to surfaces with the same net charge are rationalized by the block polyampholytic character of the protein. The presence of a triad of positively charged amino acids in the C-terminal was found to be important for the adsorption of the protein.  相似文献   

17.
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.  相似文献   

18.
One of the keys for using deoxyribonucleic acid (DNA) as a nanomaterial relies on how the individual DNA chain can be aligned and how a multitude of DNA chains can be packed into ordered nanostructures. Here we present a simple method for constructing a 2-D densely packed DNA nanostructure using the electrostatic complex of DNA with a poly(amidoamine) (PAMAM) dendrimer of generation two. Ordered DNA arrays are formed by drop-casting an aqueous solution containing positively overcharged complexes onto mica followed by a prolonged incubation. During the incubation, the complexes tend to adsorb onto the negatively charged mica surface through electrostatic attraction. The rodlike complexes organize to form ordered arrays to increase the surface density of the adsorbed complexes and hence the attractive free energy of adsorption. The densely packed nanostructure obtained here is distinguished from the previously reported spheroid or toroid structure derived from DNA complexations with the higher-generation dendrimers.  相似文献   

19.
Adsorption of fibrinogen from aqueous solutions on mica was studied using AFM and in situ streaming potential measurements. In the first stage, bulk physicochemical properties of fibrinogen and the mica substrate were characterized for various ionic strength and pH. The zeta potential and number of uncompensated (electrokinetic) charges on the protein surfaces were determined from microelectrophoretic measurements. Analogously, using streaming potential measurements, the electrokinetic charge density of mica was determined for pH range 3-10 and the NaCl background electrolyte concentration of 10(-3) and 10(-2) M. Next, the kinetics of fibrinogen adsorption at pH 3.5 and 7.4 in the diffusion cell was studied using a direct AFM determination of the number of molecules per unit area of the mica substrate. Then, streaming potential measurements were performed to determine the apparent zeta potential of fibrinogen-covered mica for different pH and ionic strength in terms of its surface concentration. A quantitative interpretation of these streaming potential measurements was achieved in terms of the theoretical model postulating a side-on adsorption of fibrinogen molecules as discrete particles. On the basis of these results, the maximum coverage of fibrinogen Θ close to 0.29 was predicted, in accordance with previous theoretical predictions. It was also suggested that anomalous adsorption for pH 7.4, where fibrinogen and the mica substrate were both negatively charged, can be explained in terms of a heterogeneous charge distribution on fibrinogen molecules. It was estimated that the positive charge was 12 e (for NaCl concentration of 10(-2) M and pH 7.4) compared with the net charge of fibrinogen at this pH, equal to -21 e. Results obtained in this work proved that the coverage of fibrinogen can be quantitatively determined using the streaming potential method, especially for Θ < 0.2, where other experimental methods become less accurate.  相似文献   

20.
The adsorption and assembly of B18 peptide on various solid surfaces were studied by reflectometry techniques and atomic force microscopy. B18 is the minimal membrane binding and fusogenic motif of the sea urchin protein bindin, which mediates the fertilization process. Silicon substrates were modified to obtain hydrophilic charged surfaces (oxide layer and polyelectrolyte multilayers) and hydrophobic surfaces (octadecyltrichlorosilane). B18 does not adsorb on hydrophilic positively charged surfaces, which was attributed to electrostatic repulsion since the peptide is positively charged. In contrast, the peptide irreversibly adsorbs on negatively charged hydrophilic as well as on hydrophobic surfaces. B18 showed higher affinity for hydrophobic surfaces than for hydrophilic negatively charged surfaces, which must be due to the presence of hydrophobic side chains at both ends of the molecule. Atomic force microscopy provided the indication that lateral diffusion on the surface affects the adsorption process of B18 on hydrophobic surfaces. The adsorption of the peptide on negatively charged surfaces was characterized by the formation of globular clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号