首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of compounds showing a very low molecular weight (i.e. < 200 Da) can be complicated when low‐resolution mass spectrometry is used in the selected‐reaction monitoring mode, since the possible number of product ions is reduced and the obtained reactions are not selective enough to overcome background noise and/or matrix interferences. In this study, the use of high‐resolution mass spectrometry based on Exactive Orbitrap was applied for the determination of a group of polar organophosphonate pesticides and transformation products (TPs), which show the aforementioned features, in agricultural soils. Namely, glyphosate, glufosinate, ethephon and their TPs, aminomethyl phosphonic acid (AMPA), 3‐methylphosphinicopropionic acid, N‐acetyl‐glufosinate and 2‐hydroxyethylphosphonic acid were analyzed. The [M‐H] ions 168.00564, 180.04202, 142.96593, 110.00016, 151.01547, 222.05259 and 124.99982 were used, respectively, for the detection and identification of the compounds. Confirmation was carried out by using accurate mass measurements of ion fragments for each compound, from neutral losses of CO2, H2O and H2CO (formaldehyde). Furthermore, the recently reported tool, relative isotopic mass defect (RΔm), was also used to support the confirmation protocol. The optimized method was fully validated at low levels, including the estimation of a not commonly used parameter: the limit of confirmation (LOC). This LOC is expressed as the lowest concentration of compound that can be confirmed using a fragment or the RΔm, and it ranged from 10 to 50 µg kg?1 for all compounds. All the data was obtained in a single injection. Finally, the method was applied to real soil samples, and glyphosate and AMPA were found at 265 µg kg?1 and 105 µg kg?1, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
4.
5.
Acylated compounds are often present in herbal medicines. In this study, a diagnostic product ion‐based strategy was established to comprehensively characterize acylated compounds in Scrophulariae Radix. After untargeted data acquisition using ultra‐high performance liquid chromatography coupled with Orbitrap mass spectrometry, the data were processed by three‐stage diagnostic product ions. First, diagnostic product ions corresponding to the acyl groups (cinnamoyl, p‐coumaroyl, feruloyl, and caffeoyl) were used to search 90 compounds. Second, these compounds were divided into three categories using diagnostic product ions for phenylethanoid glycosides, iridoid glycosides, and phenylpropanoids, respectively. Last, the linkage position of the acyl group to iridoid glycosides was discriminated via the third‐stage diagnostic product ions. As a result, 90 acylated compounds were characterized, and 37 of them were reported from Scrophulariae Radix for the first time.  相似文献   

6.
7.
Forsythoside A (FTA), the main active constituent isolated from Fructus Forsythiae, has various biological functions including anti‐oxidant, anti‐viral and anti‐microbial activities. However, while research on FTA has been mainly focused on the treatment of diseases on a material basis, FTA metabolites in vivo have not been comprehensively evaluated. Here, a rapid and sensitive method using a UHPLC‐LTQ‐Orbitrap mass spectrometer with multiple data processing techniques including high‐resolution extracted ion chromatograms, multiple mass defect filters and diagnostic product ions was developed for the screening and identification of FTA metabolites in rats. As the result, a total of 43 metabolites were identified in biological samples including 42 metabolites in urine, 22 metabolites in plasma and 15 metabolites in feces. These results demonstrated that FTA underwent a series of in vivo metabolic reactions including methylation, dimethylation, sulfation, glucuronidation, diglucuronidation, cysteine conjugation and their composite reactions. The research enhanced our understanding of FTA metabolism and built a foundation for further toxicity and safety studies.  相似文献   

8.
Recombinant monoclonal antibodies (MAbs) can be heterogeneous due to modifications that can occur during expression, purification or during storage. These large multichain proteins (~150 kDa) are structurally challenging for detailed characterization to identify the sites of modifications. We report the use of LTQ Orbitrap mass spectrometry to accurately measure the average masses of individual glycoforms by direct infusion of an intact antibody. To identify the site‐specific modification of methionines in the antibody caused by forced oxidation, we used a ‘middle‐down’ approach. The antibody was subjected to limited digestion using the endoproteinase Lys‐C and reduced to generate Fab heavy chain, single chain Fc and light chain fragments (~25 kDa each). These species were subjected to on‐line liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis using an LTQ Orbitrap, where these large precursors were dissociated by higher‐energy collisions in the C‐trap. High resolution and accuracy achieved for resulting fragments allowed us to show in a site‐specific manner that only the methionines in the Fc heavy chain were oxidized under the studied conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
Signal suppression is a common issue when analyzing compounds by liquid chromatography coupled to mass spectrometry (LC/MS/MS). Suppression of signals is caused by co‐eluting matrix compounds and is thought to take place in the interface. This paper reports strong signal suppression effects which were observed when using a single‐stage Orbitrap instrument which was coupled by an electrospray interface to a liquid chromatograph. This type of signal suppression (often the complete loss of certain analyte signal) is observed in addition to signal suppression originating in the electrospray interface. The location of where this phenomenon occurs was shown to be clearly beyond the interface region. It was suspected that not the Orbitrap cell itself, but the C‐trap, which is an integral part within the Orbitrap instrument, was the probable location. Such post‐interface signal suppression was observed – and could be experimentally induced – when multiply charged ions (e.g. electrospray protonated proteins) were co‐eluting with the analytes. High concentrations of proteins, yet not exceeding the maximum ion capacity of the trap, can cause a complete loss of all low m/z masses. This paper describes the practical implication when analyzing heavy matrix samples and discusses strategies to reduce such detrimental effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Restricted spectral accuracy is applied to Orbitrap data (240 000 resolution at m/z 400) to more clearly break out the scoring and ranking of allowable elemental compositions (ECs) in a candidate list. The correct EC is usually top ranked and separated from other answers by 10 to 40% within the dimensionless 0 to 100% scale, providing a single, definitive EC. The A + 2 position (where A denotes the monoisotopic line position) is especially advantageous in restricted spectral accuracy. It has enough intensity and more complexity than (A + 1) fine lines and is like a fingerprint. Avoidance of coalescence phenomena and careful ion population control are essential.  相似文献   

14.
Gardenin A is one of the less abundant hydroxylated polymethoxyflavonoids (OH‐PMFs) in nature, and has many potential significant health benefits. In the present study, an efficient strategy was established using high‐performance liquid chromatography coupled with linear ion trap–Orbitrap mass spectrometer to profile the in vivo metabolic fate of gardenin A in rat plasma and various tissues. First, an online LC‐MSn data acquisition method was developed to trace all the probable metabolites. Second, a combination of offline data processing methods including extracted ion chromatography and multiple mass defect filters was employed to screen the common and uncommon metabolites from the background noise and endogenous components. Finally, structures of the metabolites were elucidated based on an accurate mass measurement, the diagnostic product ions of PMFs, and relevant drug biotransformation knowledge. Based on the proposed strategy, a total of 26 metabolites were observed and characterized. The results indicate that some biotransformations, such as methylation, demethoxylation, demethylation, glucuronide conjugation, sulfate conjugation and their composite reactions, have been discovered for OH‐PMFs. Moreover, some diagnostic biotransformation pathways are summarized. Overall, this study gives us a first insight into the in vivo metabolism of gardenin A. The study also provides a practical strategy for rapidly screening and identifying metabolites, which can be widely applied for the other biotransformations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A new approach for the collection of aerosol particles is described in which the particles are first collected on a water‐soluble filter and then liberated into an aqueous solution. The filter was manufactured by electrospinning a polyacrylamide (PAA) gel solution containing 2,2′‐(bisacrylamino) diethyl disulfide (BAC) cross‐links after gel dissolution in a water solution of β‐mercaptoethanol. The morphology of the P(AA–BAC) nanofibers was characterized using atomic force microscopy (AFM) and optical microscopy. The filters were characterized for their ability to capture aerosol particles, their stability at high humidity, and their ability to release captured particles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
The capabilities of a high‐resolution (HR), accurate mass spectrometer (Exactive‐MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50 000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive‐MS was compared with that of a triple quadrupole mass spectrometer (TQ‐MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole‐N‐oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR‐MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR‐MS offers several benefits over TQ‐MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR‐MS delivers comparable results to TQ‐MS in routine quantitative drug analyses. Considering the advantages of HR‐MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号