首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel dispersion copolymerization of maleic anhydride (MAn) and vinyl acetate (VAc) without adding stabilizer is developed, which gives uniform copolymer microspheres with tunable sizes. Some principal factors affecting the microspheres, such as reaction time, monomer concentration and feed ratio, reaction media, and cosolvent, were investigated. It was found that the stabilizer‐free dispersion copolymerization of MAn and VAc is a rapid process, and the particle size grows in accordance with the evolution of polymerization. The chemical composition of the copolymer microspheres was characterized by FT‐IR and 13C NMR spectroscopies. Over a wide range of monomer concentrations, the microspheres can always be formed and stably dispersed, with uniform sizes ranging from 180 nm to 740 nm. The yield of copolymer microspheres reaches a maximum at 1:1 feed ratio of MAn to VAc, owing to the alternating copolymerization between the binary monomers by a known charge‐transfer‐complex mechanism. However, the diameter of microspheres drastically increases when MAn content is enhanced. Only some specific alkyl ester solvents, such as n‐butyl acetate, isobutyl acetate, n‐amyl acetate, are desirably fit for this unique stabilizer‐free dispersion polymerization. Furthermore, we found that when some acetone is added as a cosolvent, the copolymer microspheres can still be formed, with much larger diameters. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3760–3770, 2005  相似文献   

2.
The spherical polymer nanoparticles of biobased renewable monomers, furfuryl alcohol (FA) and maleic anhydride (MAn), with diameters (Dn) in the range of 120 to 500 nm have been prepared by stabilizer‐free dispersion copolymerization. In acetate or its mixture, the conversion of the monomers greatly depended on the concentration of AIBN. When the molar ratio of AIBN/monomers was 3.6% (wt), the monomer conversion could be as high as 80%. The aggregations of the solvated polymer chains formed the nuclei of the polymer particles. After the nucleation stage, both the monomer conversions and particle sizes increased steadily, while the coefficient of variation of the particle size decreased. The almost linear relationship between the Dn3 and the weight of polymer suggested that there is no significant secondary nucleation. The copolymer of FA and MAn could not dissolve in common organic solvents. Elemental analyses, FTIR and 13CP‐MAS spectra showed that the copolymer was close to the alternative copolymer of FA and MAn irrespective to the molar ratios of FA/MAn in monomer feed. Furthermore, the two 2,5‐ and 3,4‐dihydrofuran ring configurations exist in the copolymer and the later is the major one. The reaction of copolymer particles with triethylenetetramine confirmed the reactivity of the succinic anhydride groups at the surface of copolymer particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Dispersion polymerization of styrene with n‐dodecyl mercaptans (DDM) as the chain transfer agent was investigated. PS particles with various molecular weight, molecular weight distribution (MWD), and particle diameter were prepared by varying the concentration of DDM and also the addition time of DDM before and after the particle nucleation. The average particle diameter was increased, whereas polymerization rate, molecular weight, and MWD were decreased with increasing DDM concentrations from 0 to 10 wt %. The effect of addition of DDM before and after particle nucleation was studied at 0.4, 0.8, and 1.0 wt % DDM. The addition of DDM before particle nucleation produced PS particles of relatively large particle diameter and low molecular weight when compared with the addition of DDM after particle nucleation. This study shows that particle nucleation occurs in about 5–6 min, which corresponds to the 15–16% conversion, 372–378 nm in Dn , and provides a facile way to control the particle size and interesting information about the particle formation using the delayed addition of DDM. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6612–6620, 2008  相似文献   

4.
Composite polyglycidylmethacrylate [poly(GMA)] spherical microparticles capable of responding to magnetic fields were prepared by dispersion polymerization of GMA in the presence of iron oxides. The polymerization reaction was carried out in aqueous alcoholic media (methanol, ethanol, propan‐1‐ol, and butan‐1‐ol) using poly‐(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile as a steric stabilizer and initiator, respectively. Quaternary ammonium salt (Aliquat 336) acting as an electrostatic costabilizer favorably affected dispersity. The solubility parameter of the reaction mixture determined the size of the resulting microspheres. In addition to the particle size distribution, the addition of iron oxide to the polymerization medium also caused a shift of the particle size to higher values. The results show that poly(GMA) particles contained up to 25 wt % iron oxide. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3707–3715, 2001  相似文献   

5.
Radiopaque microspheres of sizes ranging from 0.2 to 1.4 μm were formed by the dispersion polymerization of the monomer 2‐methacryloyloxyethyl(2,3,5‐triiodobenzoate) in 2‐methoxyethanol. The effects of various polymerization parameters, including the monomer concentration, initiator type and concentration, and stabilizer molecular weight and concentration, on the molecular weight, size, and size distribution of the particles were elucidated. The characterization of these iodinated microspheres was accomplished with routine methods such as Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy, Brunauer–Emmett–Teller measurements, and elemental analysis. Because of the presence of iodine atoms in these microspheres, they were expected to possess a radiopaque nature. The radiopacity of these particles dispersed in water and in the dry state was demonstrated with an imaging technique based on X‐ray absorption usually used in hospitals. These novel radiopaque microspheres may be used for different X‐ray imaging needs, such as blood pooling, body organs, embolization, dental compositions, implants, prostheses, and nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3859–3868, 2006  相似文献   

6.
7.
《先进技术聚合物》2018,29(1):234-243
In this study, sepiolite nanoclay is used as reinforcing agent for poly(lactic acid) (PLA)/(styrene‐ethylene‐butylene‐styrene)‐g‐maleic anhydride copolymer (SEBS‐g‐MA) 90/10 (w/w) blend. Effects of sepiolite on thermal behavior, morphology, and thermomechanical properties of PLA/SEBS‐g‐MA blend were investigated. Differential scanning calorimetry results showed 7% improvement in crystallinity at 0.5 wt% of sepiolite. The nanocomposite exhibited approximately 36% increase in the tensile modulus and 17% increase in toughness as compared with the blend matrix at 0.5 and 2.5 wt% of sepiolite respectively. Field emission scanning electron microscopy and transmission electron microscopy images exhibited sepiolite‐induced morphological changes and dispersion of sepiolite in both PLA and SEBS‐g‐MA phases. Dynamic mechanical analysis and wide angle X‐ray diffraction present evidences in support of the reinforcing nature of sepiolite and phase interaction between the filler and the matrix. This study confirms that sepiolite can improve tensile modulus and toughness of PLA/SEBS‐g‐MA blend.  相似文献   

8.
The aim of this study was to develop novel thermally responsive polymer microspheres with magnetic properties. Dispersion and inverse emulsion copolymerization of N‐isopropylacrylamide (NIPAAm) and N,N′‐methylenebisacrylamide (MBAAm) was investigated in the presence of γ‐Fe2O3 nanoparticles. The resulting microspheres were characterized in terms of morphology, size, polydispersity, iron content, and temperature‐dependent swelling using optical microscopy, transmission electron microscopy, scanning electron microscopy, QELS, and AAS. The effects of several variables, such as the concentration of γ‐Fe2O3, MBAAm crosslinking agent, Span 80 surfactant, 2,2′‐azobis(2‐methyloctanenitrile) (AMON) initiator, and polymerization temperature on the properties of the microspheres were studied. Swelling and thermoresponsive behavior of the microspheres containing γ‐Fe2O3 nanoparticles were also investigated. The microspheres contained about 8 wt % of iron. The presence of magnetic nanoparticles and their concentration changes did not have any significant effect on the temperature sensitivity of the composites. The particles gradually shrink into an increasingly collapsed state when the temperature is raised to 40 °C since the increase in temperature weakens the hydration and PNIPAAm chains gradually become more hydrophobic, which leads to the collapse of the particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5884–5898, 2007  相似文献   

9.
Nonporous hydrogel microspheres 0.1–1.3 μm in diameter were prepared by the dispersion copolymerization of 1‐vinyl‐2‐pyrrolidone and ethylene dimethacrylate as a crosslinking agent. The crosslinking was evidenced by solid state 13C NMR and elemental analysis. The effect of various parameters including selection of solvent (cyclohexane, butyl acetate), initiator (4,4′‐azobis(4‐cyanopentanoic acid), 2,2′‐azobisisobutyronitrile, dibenzoyl peroxide) and stabilizer on the properties of resulting microspheres has been studied. Dynamic light scattering and photographic examination were used for determination of the diameter and polydispersity of microspheres. Increasing concentration of steric stabilizer in the initial polymerization mixture decreased the particle size. The particle size depended on the molecular weight of polystyrene‐block‐hydrogenated polyisoprene stabilizer, but not on the number of PS and polybutadiene blocks in the styrene–butadiene block copolymer stabilizers. Dibenzoyl peroxide used as an initiator resulted in agglomeration of particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 653–663, 2000  相似文献   

10.
Monodisperse polystyrene (PS) particles were prepared by a living radical dispersion polymerization with a reversible addition‐fragmentation chain transfer (RAFT) agent in an ethanol medium. In the presence of RAFT agent, the effects of various reaction parameters on the characteristics of PS particles were systematically investigated. When no RAFT agent was involved, the number‐average molecular weight (Mn) of the PS particles increased from 17,800 to 30,000 g/mol, but the weight‐average diameter (Dw) decreased from 2.54 to 2.06 μm with the increase of poly(N‐vinylpyrrolidone) content from 4.0 to 16.0 wt %. No correlation between the Mn and the coefficient of variation (CV) was observed. However, when the RAFT concentration varied from 0 to 2.0 wt %, all of the conversion, Mn, Dw, CV, and polydispersity index (Mw/Mn) decreased. This indicates that the RAFT agent alters the inverse behavior between the molecular weight (MW) and particle size shown in the conventional dispersion polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 872–885, 2008  相似文献   

11.
The (controlled) free‐radical copolymerization of maleic anhydride and styrene or derivatives thereof is often thought to provide nearly perfect alternating copolymers. Here, the RAFT copolymerization of electron‐rich styrene derivatives with maleic anhydride is reported. This copolymerization shows distinct penultimate effects, resulting in polymers with increased incorporation of styrene monomers, that is, where a tendency toward periodic (S‐S‐MA) copolymers exists. This work could be a first step towards periodic copolymers based on maleic anhydride and styrene derivatives. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2932–2939  相似文献   

12.
We report the kinetics and mechanism of soap‐free emulsion polymerization of styrene using laponite platelets as stabilizers. The polymerization was initiated by potassium persulfate and the latex particles were stabilized by laponite platelets dispersed in water. Laponite adsorption on the polymer particles was enhanced by the addition of poly(ethylene glycol) monomethylether methacrylate (PEGMA). Particle nucleation can be described using the classical homogeneous nucleation mechanism followed by coagulation of unstable precursors. Oligomeric radicals formed in the water phase become insoluble and precipitate on the laponite surface leading to primary precursor particles composed of a few polymer chains and one or several clay platelets. Mature latex particles are then generated by coagulation and growth of the previously formed precursor particles. Both the nucleation and initial aggregation rates increased in the presence of PEGMA. Calorimetric monitoring of the polymerization allowed estimating the heat produced by the reaction and the monomer conversion. Hence, using the monomer material balance, the number of radicals in the polymer particles could be estimated precisely. The average number of radicals per particle, $ \bar n $ , was found to be high in the range 3–6. This result was attributed to strong attractive interactions between the growing radicals and the clay surface. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

13.
Water soluble monomer like sodium p‐styrene sulfonate (SSS) is copolymerized with hydrophobic and reactive monomer glycidyl methacrylate (GMA). The polymerization proceeds as dispersion and forms gels. The gel forming nature prevails even with other hydrophobic and hydrophilic monomers to form ternary polymeric systems. The swelling is dependent on polymer composition as well as the treatment history of polymers. SSS also induces ring opening of GMA to form 1,2‐diols as confirmed independently by various model reactions. The ability of hydrogels to absorb various dyes indicates that owing to the anionic nature, hydrogels absorb cationic dyes nearly quantitatively. Because of their strong affinity to cationic species these hydrogel forming polymers are potentially useful in water purification applications as well as purification of proteins. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 626–634  相似文献   

14.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

15.
Well‐defined copolymer of acrylonitrile (AN) and maleic anhydride (MAn) has been successfully synthesized via reversible addition‐fragmentation chain transfer polymerization. The polymerization kinetics and “living”/controlled features were thoroughly studied and confirmed. The thermal properties and spinnability of the prepared copolymers were investigated via differential scanning calorimetry, thermogravimetric analyzer, and electrospinning subsequently. When PAN‐co‐PMAn was used as precursors, nonwoven with “crosslinked” structures was obtained during electrospinning. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5263–5269  相似文献   

16.
Photoinitiated dispersion polymerization of methyl methacrylate was carried out in a mixture of ethanol and water as dispersion medium in the presence of poly(N‐vinylpyrrolidone) (PVP) as the steric stabilizer and Darocur 1173 as photoinitiator. 93.7% of conversion was achieved within 30 min of UV irradiation at room temperature, and microspheres with 0.94 μm number–average diameter and 1.04 polydispersity index (PDI) were obtained. X‐ray photoelectron spectroscope (XPS) analysis revealed that only parts of surface of the microspheres were covered by PVP. The particle size decreased from 2.34 to 0.98 μm as the concentration of PVP stabilizer increased from 2 to 15%. Extra stabilizer (higher than 15%) has no effect on the particle size and distribution. Increasing medium polarity or decreasing monomer and photoinitiator concentration resulted in a decrease in the particle size. Solvency of reaction medium toward stabilizer, which affects the adsorption of stabilizer on the particle surface, was shown to be crucial for controlling particle size and uniformity because of the high reaction rate in photoinitiated dispersion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1329–1338, 2008  相似文献   

17.
18.
Dispersion polymerization of styrene in polar solvents in the presence of hydroxypropyl cellulose (HPC) produces latex particles from ca. 1 to 26 μm depending on reaction parameters. Increasing the initiator concentration or temperature decreases the molecular weight, but increases the particle size and breadth of the size distribution. The decrease in molecular weight with increasing Ri, caused by larger initiator concentration or higher temperature, is expected based of fundamental kinetic relationships. The inverse correlation between size and rate of initiation is rationalized by polarity (stabilizing ability) of the grafted HPC-polystyrene formed in situ. High polar HPC-g-PS, which contains shorter graft polystyrene chain, stabilizes particles less effectively and this leads to larger particles. The primary influence of initial styrene concentration is a solvent effect: larger particles are obtained at high styrene concentration due to high solubility of polystyrene during the initial part of the reaction. The influence of the molecular weight of HPC is to change the polarity of the HPC-g-PS stabilizer. Comparison of particle growth of three critical polymerization systems suggests that the favorable continuous-phase solubility parameter for dispersion polymerization of styrene is around 11.6 (cal/mL)1/2. Too high or too low polarity generates particles with broad size distribution because large particles are formed during the initial stage and nucleation continues as the polymerization proceeds. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
The TEMPO‐mediated polymerization of styrene in the presence of camphorsulfonic acid (CSA) is carried out using controlled radical dispersion polymerization. In the absence of TEMPO and CSA, 92% of conversion was achieved within 3 h of polymerization. When TEMPO is solely used, broadening of particle size with narrow PDI was observed because of the prolonged polymerization time. However, when 1:1 molar ratio of CSA/TEMPO was added, the fairly monodisperse PS microspheres having 5.83 μm average size and 3.42% CV (coefficient of variation) were successfully achieved because of the narrow molecular weight of intermediate oligomers and shortening of the polymerization time. This result obviously indicates that the addition of CSA in TEMPO‐mediated dispersion polymerization not only shortens the polymerization time but also greatly improves the uniformity of the microspheres. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 62–68, 2006  相似文献   

20.
The incorporation of allylic monomers into highly reactive vinyl polymerizations provides a means to control molecular weight, conversion, and Trommsdorff effect to produce copolymers with desirable performance characteristics. The copolymerization behavior of styrene with sec‐butenyl acetate, whose copolymerization properties have not been reported, is investigated. Copolymers were produced via semicontinuous emulsion polymerization and characterized via NMR, gel permeation chromatography, differential scanning calorimetry, dynamic light scattering, and atomic force microscopy. A high degree of chain termination due to allylic hydrogen abstraction was observed, as expected, with resultant decreases in molecular weight and in monomer conversion. However, high conversions were achieved, and it was possible to incorporate high percentages of the allylic acetate comonomer into the polymer chain. Copolymer thermal properties are reported. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3191–3203, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号