首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

2.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

3.
A class of graphs ordered by the homomorphism relation is universal if every countable partial order can be embedded in . It is known (see [ 1 , 3 ]) that the class of k‐colorable graphs, for any fixed , induces a universal partial order. In 4 , a surprisingly small subclass of which is a proper subclass of the series‐parallel graphs (the K4‐minor‐free graphs) is shown to be universal. On another side, Pan and Zhu in 7 proved a density result that for each rational number , there is a K4‐minor‐free graph with circular chromatic number equal to a/b. In this note, we show for each rational number a/b within this interval the class of K4‐minor‐free graphs with circular chromatic number a/b is universal if and only if , 5/2 or 3. This shows yet another surprising richness of the K4‐minor‐free class that it contains universal classes as dense as the rational numbers. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
It is now known that many properties of the objects in certain combinatorial structures are equivalent, in the sense that any object possessing any of the properties must of necessity possess them all. These properties, termed quasirandom, have been described for a variety of structures such as graphs, hypergraphs, tournaments, Boolean functions, and subsets of Z n, and most recently, sparse graphs. In this article, we extend these ideas to the more complex case of graphs which have a given degree sequence. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

5.
We investigate the degree sequences of scale‐free random graphs. We obtain a formula for the limiting proportion of vertices with degree d, confirming non‐rigorous arguments of Dorogovtsev, Mendes, and Samukhin ( 14 ). We also consider a generalization of the model with more randomization, proving similar results. Finally, we use our results on the degree sequence to show that for certain values of parameters localized eigenfunctions of the adjacency matrix can be found. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

6.
For any d?5 and k?3 we construct a family of Cayley graphs of degree d, diameter k, and order at least k((d?3)/3)k. By comparison with other available results in this area we show that our family gives the largest currently known Cayley graphs for a wide range of sufficiently large degrees and diameters. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 87–98, 2010  相似文献   

7.
We consider the set of all graphs on n labeled vertices with prescribed degrees D = (d1,…,dn). For a wide class of tame degree sequences D we obtain a computationally efficient asymptotic formula approximating the number of graphs within a relative error which approaches 0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame degree sequence D is well described by a certain maximum entropy matrix computed from D. We also establish an asymptotic formula for the number of bipartite graphs with prescribed degrees of vertices, or, equivalently, for the number of 0‐1 matrices with prescribed row and column sums. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   

8.
In this paper we show that every simple cubic graph on n vertices has a set of at least ? n/4 ? disjoint 2‐edge paths and that this bound is sharp. Our proof provides a polynomial time algorithm for finding such a set in a simple cubic graph. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 57–79, 2003  相似文献   

9.
《Journal of Graph Theory》2018,87(3):362-373
For an edge‐colored graph, its minimum color degree is defined as the minimum number of colors appearing on the edges incident to a vertex and its maximum monochromatic degree is defined as the maximum number of edges incident to a vertex with a same color. A cycle is called properly colored if every two of its adjacent edges have distinct colors. In this article, we first give a minimum color degree condition for the existence of properly colored cycles, then obtain the minimum color degree condition for an edge‐colored complete graph to contain properly colored triangles. Afterwards, we characterize the structure of an edge‐colored complete bipartite graph without containing properly colored cycles of length 4 and give the minimum color degree and maximum monochromatic degree conditions for an edge‐colored complete bipartite graph to contain properly colored cycles of length 4, and those passing through a given vertex or edge, respectively.  相似文献   

10.
Let H be a fixed graph and a subcritical graph class. In this paper we show that the number of occurrences of H (as a subgraph) in a graph in of order n, chosen uniformly at random, follows a normal limiting distribution with linear expectation and variance. The main ingredient in our proof is the analytic framework developed by Drmota, Gittenberger and Morgenbesser to deal with infinite systems of functional equations [Drmota, Gittenberger, and Morgenbesser, Submitted]. As a case study, we obtain explicit expressions for the number of triangles and cycles of length 4 in the family of series‐parallel graphs. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 631–673, 2017  相似文献   

11.
《Journal of Graph Theory》2018,88(1):146-153
For minimally k‐connected graphs on n vertices, Mader proved a tight lower bound for the number of vertices of degree k in dependence on n and k. Oxley observed 1981 that in many cases a considerably better bound can be given if is used as additional parameter, i.e. in dependence on m, n, and k. It was left open to determine whether Oxley's more general bound is best possible. We show that this is not the case, but give a closely related bound that deviates from a variant of Oxley's long‐standing one only for small values of m. We prove that this new bound is best possible. The bound contains Mader's bound as special case.  相似文献   

12.
A graph G is said to be ‐universal if it contains every graph on at most n vertices with maximum degree at most Δ. It is known that for any and any natural number Δ there exists such that the random graph G(n, p) is asymptotically almost surely ‐universal for . Bypassing this natural boundary, we show that for the same conclusion holds when . © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 380–393, 2017  相似文献   

13.
A graph G is a 2‐tree if G = K3, or G has a vertex v of degree 2, whose neighbors are adjacent, and G/ v is a 2‐ tree. A characterization of the degree sequences of 2‐trees is given. This characterization yields a linear‐time algorithm for recognizing and realizing degree sequences of 2‐trees. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:191‐209, 2008  相似文献   

14.
15.
Given an n ‐vertex pseudorandom graph G and an n ‐vertex graph H with maximum degree at most two, we wish to find a copy of H in G , that is, an embedding φ : V ( H ) V ( G ) so that φ ( u ) φ ( v ) E ( G ) for all u v E ( H ) . Particular instances of this problem include finding a triangle‐factor and finding a Hamilton cycle in G . Here, we provide a deterministic polynomial time algorithm that finds a given H in any suitably pseudorandom graph G . The pseudorandom graphs we consider are ( p , λ ) ‐bijumbled graphs of minimum degree which is a constant proportion of the average degree, that is, Ω ( p n ) . A ( p , λ ) ‐bijumbled graph is characterised through the discrepancy property: | e ( A , B ) ? p | A | | B | | < λ | A | | B | for any two sets of vertices A and B . Our condition λ = O ( p 2 n / log n ) on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption‐reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach builds on our previous work, incorporating the work of Nenadov, together with additional ideas and simplifications.  相似文献   

16.
Let be the family of graphs G such that all sufficiently large k ‐connected claw‐free graphs which contain no induced copies of G are subpancyclic. We show that for every k≥3 the family is infinite and make the first step toward the complete characterization of the family . © 2009 Wiley Periodicals, Inc. J Graph Theory 62, 263–278, 2009  相似文献   

17.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S (other than itself). The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Γt(G). We establish bounds on Γt(G) for claw‐free graphs G in terms of the number n of vertices and the minimum degree δ of G. We show that if if , and if δ ≥ 5. The extremal graphs are characterized. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 148–158, 2003  相似文献   

18.
On the model of the cycle‐plus‐triangles theorem, we consider the problem of 3‐colorability of those 4‐regular hamiltonian graphs for which the components of the edge‐complement of a given hamiltonian cycle are non‐selfcrossing cycles of constant length ≥ 4. We show that this problem is NP‐complete. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 125–140, 2003  相似文献   

19.
A circular‐arc graph is the intersection graph of a family of arcs on a circle. A characterization by forbidden induced subgraphs for this class of graphs is not known, and in this work we present a partial result in this direction. We characterize circular‐arc graphs by a list of minimal forbidden induced subgraphs when the graph belongs to any of the following classes: P4 ‐free graphs, paw‐free graphs, claw‐free chordal graphs and diamond‐free graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 289–306, 2009  相似文献   

20.
Let 𝒯n denote the set of unrooted unlabeled trees of size n and let k ≥ 1 be given. By assuming that every tree of 𝒯n is equally likely, it is shown that the limiting distribution of the number of nodes of degree k is normal with mean value ∼ μkn and variance ∼ σn with positive constants μk and σk. Besides, the asymptotic behavior of μk and σk for k → ∞ as well as the corresponding multivariate distributions are derived. Furthermore, similar results can be proved for plane trees, for labeled trees, and for forests. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 227–253, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号