首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrospray (ES) ion source is a controlled-current electrolytic flow cell. Electrolytic reactions in the ES emitter capillary are continually ongoing to sustain the production of charged droplets and ultimately gas-phase ions from this device. Under certain circumstances, the analytes under study may be directly involved in these electrolytic processes. It is demonstrated that a simple means to minimize analyte electrolysis is to exchange the normal metal emitter capillary of commercial ES sources with one made of fused silica. This change is shown to provide an ES mass spectrometric system of similar performance in terms of gas-phase ion signal generated for non-electroactive analytes and also assures minimal oxidation of electroactive analytes even at low (2.0 microl x min(-1)) solution flow-rates and high (millimolar) solution electrolyte concentrations.  相似文献   

2.
3.
The effect of salt concentration on analyte response using electrospray ionization mass spectrometry (ESI-MS) was measured and compared to that predicted by Enke's equilibrium partitioning model. The model predicts that analyte response will be proportional to concentration and that the response factor will decrease with increasing electrolyte concentration. The measured analyte response is proportional to concentration over four orders of magnitude when the electrolyte concentration is below 10(-3) M, as the model predicts. The concentration of excess charge ([Q]) generated by the ESI process increases significantly at 10(-3) M ionic concentration, but the response factor decreases at this concentration. Changes in shape of the spray that cause a loss of ion transmission efficiency may be the basis for the decrease in response. An increase in the analyte response factor with increasing electrolyte concentration is observed for electrolyte concentrations below 10(-3) M. An explanation for this based on the electrical double layer is proposed.  相似文献   

4.
A novel microfabricated multichannel emitter for electrospray ionization mass spectrometry (ESI-MS) was implemented with polydimethylsiloxane (PDMS) using a soft lithography technique. The emitters are formed as electrospray tips along a thin membrane on the edge of the device with channels of 100 microm x 30 microm dimensions. The electrospray performance of the PDMS emitters for a single channel device and a four channel device interfaced with a time-of-flight mass spectrometer was evaluated for detecting the molecular weight of reference peptides (angiotensin I and bradykinin). The emitters were durable at the flow rate of 1-20 microL min(-1) for more than 30 h of continuous electrospray with limit of detection of 1 microM (S/N 18). This microfabrication method for a PDMS multichannel emitter as an integral part of a microfluidic device will facilitate development of more complex microfluidic analysis systems using ESI-MS.  相似文献   

5.
This article describes the components, operation, and use of a porous flow-through electrode emitter in an electrospray ion source. This emitter electrode geometry provided enhanced mass transport to the electrode surface to exploit the inherent electrochemistry of the electrospray process for efficient analyte oxidation at flow rates up to 800 microL/min. An upstream current loop in the electrospray source circuit, formed by a grounded contact to solution upstream of the emitter electrode, was utilized to increase the magnitude of the total current at the emitter electrode to overcome current limits to efficient oxidation. The resistance in this upstream current loop was altered to control the current and "dial-in" the extent of analyte oxidation, and thus, the abundance and nature of the oxidized analyte ions observed in the mass spectrum. The oxidation of reserpine to form a variety of products by multiple electron transfer reactions and oxidation of the ferroceneboronate derivative of pinacol to form the ES active radical cation were used to study and to illustrate the performance of this new emitter electrode design. Flow injection, continuous infusion, and on-line HPLC experiments were performed.  相似文献   

6.
Insights into the electrolysis of analytes at the electrode surface of an electrospray (ES) emitter capillary are realized through an examination of the results from off-line chronopotentiometry experiments and from mass transport calculations for flow through tubular electrodes. The expected magnitudes and trends in the interfacial potential in an ES emitter under different solution conditions and current densities, using different metal electrodes, are revealed by the chronopotentiometry data. The mass transport calculations reveal the electrode area required for complete analyte electrolysis at a given volumetric flow rate. On the basis of these two pieces of information, the design of ES emitters that may maximize and those that may minimize analyte electrolysis during ES mass spectrometry are discussed.  相似文献   

7.
A previously proposed partition equilibrium model for quantitative prediction of analyte response in electrospray ionization mass spectrometry is modified to yield an improved linear relationship. Analyte mass spectrometer response is modeled by a competition mechanism between analyte and background electrolytes that is based on partition equilibrium considerations. The correlation between analyte response and solution composition is described by the linear model over a wide concentration range and the improved model is shown to be valid for a wide range of experimental conditions. The behavior of an analyte in a salt solution, which could not be explained by the original model, is correctly predicted. The ion suppression effects of 16 : 0 lysophosphatidylcholine (LPC) on analyte signals are attributed to a combination of competition for excess charge and reduction of total charge due to surface tension effects. In contrast to the complicated mathematical forms that comprise the original model, the simplified model described here can more easily be employed to predict analyte mass spectrometer responses for solutions containing multiple components. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Electrospray mass spectrometry was used to simultaneously determine aspartame (APM) and five of its degradation products; aspartic acid, aspartylphenylalanine, 5-benzyl-3,6-dioxo-2-piperazieacetic acid (diketopiperazine), phenylalanine, and phenylalanine methyl ester. Under the ionization conditions used, there was no interfering fragmentation for any of the six compounds, i.e., no fragmentation of the compound being tested into other species also being monitored. A study of APM degradation in solution at various pH's and at various temperatures using this method was performed.  相似文献   

9.
Diiodothyronines 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), and 3,3'-diiodothyronine (3,3'-T2) are important metabolites of 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3; reverse T3). In this paper, a novel and rapid method for identifying and quantifying 3,5-T2, 3',5'-T2 and 3,3'-T2 has been introduced using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Fragmentation patterns were proposed on the basis of our data obtained by ESI-MS/MS. MS2 spectra in either negative ionization mode or positive ionization mode can be used to differentiate 3,5-T2, 3',5'-T2 and 3,3'-T2. On the basis of the relative abundance of fragment ions in MS2 spectra under the positive ionization mode, quantification of the 3,5-T2, 3',5'-T2 and 3,3'-T2 isomers in mixtures is also achieved without prior separation.  相似文献   

10.
In this work two monoiodothyronines, 3-T1 and 3'-T1, have been analyzed using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Fragmentation patterns were proposed based on our data obtained by ESI-MS/MS. MS2 spectra in either negative or positive ion mode can be used to differentiate 3-T1 and 3'-T1. Based on the relative abundance of fragment ions in MS2 spectra in the negative ion mode, quantification of the 3-T1 and 3'-T1 isomers in mixtures is achieved without prior separation. Solid-phase extraction in combination with ESI-MS/MS provides a practicable procedure that can be used to determine the molar ratio of 3-T1 and 3'-T1 in human serum with an error less than 3%. The detection limits for 3-T1 and 3'-T1 were 0.5 and 0.7 pg/microL, respectively.  相似文献   

11.
Recently we have shown that, as a versatile ionization technique, desorption electrospray ionization (DESI) can serve as a useful interface to combine electrochemistry (EC) with mass spectrometry (MS). In this study, the EC/DESI-MS method has been further applied to investigate some aqueous phase redox reactions of biological significance, including the reduction of peptide disulfide bonds and nitroaromatics as well as the oxidation of phenothiazines. It was found that knotted/enclosed disulfide bonds in the peptides apamin and endothelin could be electrochemically cleaved. Subsequent tandem MS analysis of the resulting reduced peptide ions using collision-induced dissociation (CID) and electron-capture dissociation (ECD) gave rise to extensive fragment ions, providing a fast protocol for sequencing peptides with complicated disulfide bond linkages. Flunitrazepam and clonazepam, a class of nitroaromatic drugs, are known to undergo reduction into amines which was proposed to involve nitroso and N-hydroxyl intermediates. Now in this study, these corresponding intermediate ions were successfully intercepted and their structures were confirmed by CID. This provides mass spectrometric evidence for the mechanism of the nitro to amine conversion process during nitroreduction, an important redox reaction involved in carcinogenesis. In addition, the well-known oxidation reaction of chlorpromazine was also examined. The putative transient one-electron transfer product, the chlorpromazine radical cation (m/z 318), was captured by MS, for the first time, and its structure was also verified by CID. In addition to these observations, some features of the DESI-interfaced electrochemical mass spectrometry were discussed, such as simple instrumentation and the lack of background signal. These results further demonstrate the feasibility of EC/DESI-MS for the study of the biology-relevant redox chemistry and would find applications in proteomics and drug development research.  相似文献   

12.
This work describes the synchronized dual-polarity (DP) electrospray ionization (ESI) method and demonstrates the first DP ESI mass spectra obtained using two mass spectrometers. Stable double Taylor cones were produced by applying two counter electric voltages with opposite polarities to one electrosprayer. The development of double Taylor cones required higher extraction voltages than conventional ESI, but DP ESI worked effectively at liquid flow rate range three times wider than conventional ESI. Using pure methanol, the emission currents of the two cones were neutralized and no current was drawn from the sprayer. Synchronized DP mass spectra were obtained using electrospray calibrants dissolved in methanol solution of low water content. For bovine insulin with conventional electrospray solution, the gas-assisted electrospray delivered satisfactory sensitivity and stability for routine mass analyses.  相似文献   

13.
Editorial Comment Last month we presented, as a Special Feature, a set of five articles that constituted a Commentary on the fundamentals and mechanism of electrospray ionization (ESI). These articles produced some lively discussion among the authors on the role of electrochemistry in ESI. Six authors participated in a detailed exchange of views on this topic, the final results of which constitute this month's Special Feature. We particularly hope that younger scientists will find value in this month's Special Feature, not only for the science that it teaches but also what it reveals about the processes by which scientific conclusions are drawn. To a degree, the contributions part the curtains on these processes and show science in action. We sincerely thank the contributors to this discussion. The give and take of intellectual debate is not always easy, and to a remarkable extent this set of authors has maintained good humor and friendships, even when disagreeing strongly on substance. Graham Cooks and Richard Caprioli Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A simple and rugged sheathless interface for capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) was designed using common laboratory tools and chemicals. The interface uses a small platinum (Pt) wire that is inserted into the CE capillary through a small hole near the terminus. The position of the wire inside the CE capillary and within the buffer solution is analogous to standard CE separation operations where the terminus of the CE capillary is placed inside a buffer reservoir along with a grounded platinum electrode. By combining the use of the in-capillary electrode interface with sharpening of the fused silica tip of the CE capillary outlet, a stable electrospray current was maintained for an extended period of time. The design was successfully applied to CE/ESI-MS separations and analysis of mixtures of peptides and proteins. A detection limit of approximately 4 femtomole (S/N = 3) was achieved for detection of myoglobin utilizing a 75-µm-i.d. aminopropylsilane treated CE column and using a wide scan range of 550–1300 Da. The advantages of this new design include (1) a stable CE and ESI current, (2) durability, (3) a reduced risk of sparking between the capillary tip and the inlet of the mass spectrometer, (4) lack of any dead volume, and (5) facile fabrication with common tools and chemicals.  相似文献   

16.
Insights into the early molecular events involving protein-ligand/substrate interactions such as protein signaling and enzyme catalysis can be obtained by examining these processes on a very short, millisecond time scale. We have used time-resolved electrospray mass spectrometry to delineate the catalytic mechanism of a key enzyme in bacterial lipopolysaccharide biosynthesis, 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase (KDO8PS). Direct real-time monitoring of the catalytic reaction under single enzyme turnover conditions reveals a novel hemiketal phosphate intermediate bound to the enzyme in a noncovalent complex that establishes the reaction pathway. This study illustrates the successful application of mass spectrometry to reveal transient biochemical processes and opens a new time domain that can provide detailed structural information of short-lived protein-ligand complexes.  相似文献   

17.
A low-flow reactor is described for the on-line monitoring of peptides digested with carboxypeptidase P by electrospray ionization. Two peptides were analyzed using this technique: glucagon (average MW 3482.8 Da), and apomyoglobin (average MW 16,951.5). Both peptides gave interpretable results. The first 19 amino acids of glucagon were successfully sequenced. Apomyoglobin yielded sequence information to the 30th amino acid with some gaps. At 300 nL/min, 50% of the first 30 amino acids were sequenced and at 1 microL/min, 67% of the first 30 amino acids were observed.  相似文献   

18.
Rezenom YH  Dong J  Murray KK 《The Analyst》2008,133(2):226-232
We have used an infrared laser for desorption of material and ionization by interaction with electrosprayed solvent. Infrared laser-assisted desorption electrospray ionization (IR LADESI) mass spectrometry was used for the direct analysis of water-containing samples under ambient conditions. An ion trap mass spectrometer was modified to include a pulsed Er:YAG laser at 2.94 microm wavelength coupled into a germanium oxide optical fiber for desorption at atmospheric pressure and a nanoelectrospray source for ionization. Analytes in aqueous solution were placed on a stainless steel target and irradiated with the pulsed IR laser. Material desorbed and ablated from the target was ionized by a continuous stream of charged droplets from the electrosprayed solvent. Peptide and protein samples analyzed using this method yield mass spectra similar to those obtained by conventional electrospray. Blood and urine were analyzed without sample pretreatment to demonstrate the capability of IR LADESI for direct analysis of biological fluids. Pharmaceutical products were also directly analyzed. Finally, the role of water as a matrix in the IR LADESI process is discussed.  相似文献   

19.
20.
The recently developed technique of desorption electrospray ionization (DESI) has been applied to the rapid analysis of controlled substances. Experiments have been performed using a commercial ThermoFinnigan LCQ Advantage MAX ion-trap mass spectrometer with limited modifications. Results from the ambient sampling of licit and illicit tablets demonstrate the ability of the DESI technique to detect the main active ingredient(s) or controlled substance(s), even in the presence of other higher-concentration components. Full-scan mass spectrometry data provide preliminary identification by molecular weight determination, while rapid analysis using the tandem mass spectrometry (MS/MS) mode provides fragmentation data which, when compared to the laboratory-generated ESI-MS/MS spectral library, provide structural information and final identification of the active ingredient(s). The consecutive analysis of tablets containing different active components indicates there is no cross-contamination or interference from tablet to tablet, demonstrating the reliability of the DESI technique for rapid sampling (one tablet/min or better). Active ingredients have been detected for tablets in which the active component represents less than 1% of the total tablet weight, demonstrating the sensitivity of the technique. The real-time sampling of cannabis plant material is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号