首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of individual Violet Lander molecules self‐assembled on the c(8×2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low‐temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5‐di‐tert‐butylphenyl groups around σ bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.  相似文献   

2.
An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1‐phenyloctane/graphite interface revealed that the molecules formed a self‐assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two‐dimensional chirality about the macrocyclic faces, which led to a unique conglomerate‐type self‐assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system.  相似文献   

3.
The adsorption characteristics of 1,3‐benzenedithiol (1,3‐BDT) and 1,3‐benzenedimethanethiol (1,3‐BDMT) on Au surfaces are investigated by means of surface‐enhanced Raman scattering, UV/Vis absorption spectroscopy, and cyclic voltammetry (CV). 1,3‐BDMT is found to adsorb via two S–Au linkages at concentrations below monolayer coverage, but to have an upright geometry as the concentration increases on Au nanoparticles. On the other hand, 1,3‐BDT is found to adsorb by forming two S–Au linkages, regardless of concentration, based on the disappearance of the ν(SH)free stretching band. Because of the absence of the methylene unit, 1,3‐BDT appeares not to self‐assemble efficiently on Au surfaces. The UV/Vis absorption spectroscopy and CV techniques are also applied to check the formation of self‐assembled monolayers of 1,3‐BDT and 1,3‐BDMT on Au. Density functional theory calculations based on a simple adsorption model using an Au8 cluster are performed to better understand the nature of the adsorption characteristics of 1,3‐BDT and 1,3‐BDMT on Au surfaces.  相似文献   

4.
《Electroanalysis》2004,16(21):1755-1761
Ferrocene derivatives containing primary amines and maleimide groups were attached covalently onto N‐hydrosuccinimidyl (NHS)‐terminated alkanethiol self‐assembled monolayers (SAMs) and SAMs of alkanedithiol. The surface coverage and efficiencies of the two cross‐linking reactions were evaluated with cyclic voltammetry. All the ferrocene derivatives attached onto the alkanethiol or alkanedithiol SAMs exhibit reversible redox waves. The surface coverage of the aminated ferrocene groups was compared to that of N‐hydrosuccinimidyl (NHS)‐terminated alkanethiol SAM. The covalent attachment of β‐ferrocenylethylamine onto a 11,11′‐dithio‐bis(succinimidylundecanoate) SAM yielded an efficiency as high as 63.1%. The cross‐linking efficiency of this reaction was found to increase with the nucleophilicity of the amino groups. SAMs of longer alkyl chains favor the attachment of a greater number of ferrocene derivatives. As for the Michael‐type electrophilic addition between the sulfhydryl groups of the alkanedithiol SAMs and the ferrocenyl maleimide, the cross‐linking efficiencies were found to range from 6.5% to 25.7%, depending on the alkanedithiol chain length. The difference in the efficiencies between the two types of cross‐linking reactions might be partially attributable to the steric hindrance imposed by the SAMs and the relative sizes of the functional groups.  相似文献   

5.
A series of linear doubly discotic triad supermolecules based on a porphyrin (P) core and two triphenylene (Tp) arms linked by amide bonds are synthesized. The samples are denoted as P(Tp)2. Hydrogen bonding along the P stacks is the primary driving force for the supramolecular self‐assembly of P(Tp)2 triad supermolecules. Meanwhile, the degree of coupling between P and Tp disks also plays an important role. For samples with the spacer lengths longer than or similar to the alkyl chain lengths in the Tp arms, P and Tp are decoupled to a large degree. This decoupling result in non‐uniform tilt angles for P and Tp disks along both the a‐ and c‐axes. Therefore, large unit cells are observed with eight P(Tp)2 supermolecules per cell. For a sample with the spacer length much shorter than the alkyl chains in the Tp arms, P and Tp are strongly coupled. Therefore, both P and Tp have uniform tilt angles along the a‐ and c‐axes. A small unit cell is obtained with only one P(Tp)2 supermolecule per cell.  相似文献   

6.
Two cystine-bearing 1,3-bridged calix[4]arenes were used as the coatings of the quartz crystal microbalance (QCM) with gold electrodes. The two calix[4]arene derivatives were self-assembled onto the gold electrode surface by the covalent attachment between the di-sulfur and gold. The compound of cystine-bearing bi-phenylalanine 1,3-bridged calix[4]arene (CPC) with longer alkyl chain had better self-assembled capacity onto the fresh surfaces of gold electrode than that of cystine-bearing 1,3-bridged calix[4]arene (CC) with comparably shorter alkyl chain.The modified QCM sensors were used to recognize the butylamine isomers in gas. The results showed that the QCM coated with both compounds had preferential affinity to n-butylamine, then i-butylamine, t-butylamine in the range of low concentrations, indicating that in the recognition process, the steric hindrance effect played an important role when forming complex with guest molecules. When the concentrations of the analytes were increased, the polarity and the magnetism of the butylamine became determinative factors. The reversibility was improved greatly and the equilibrium time was much shorter on the self-assembled film than on the film obtained by dropping coating.  相似文献   

7.
The formation process of n‐alkane phosphonic acid CH3 (CH2)n?1 PO(OH)2 (n = 10,12,14,18) self‐assembled monolayers (SAMs), deposited from ethanol solutions on aluminum oxide, has been monitored in situ using surface plasmon resonance (SPR) spectroscopy. In addition, the two‐solvent approach is used to obtain both film thickness and refractive index of the fully formed adsorbed layers. A densely packed adsorbed layer is formed only for the longest molecules with n = 18. The chain length and solution concentration dependence of formation kinetics are studied, and the existence of two distinct kinetic steps is revealed. Fittings of the experimental results with various kinetic models are performed. Our analysis suggests that during the first kinetic step, a transition from a lying‐down to a standing‐up phase takes place, and the growth of this standing‐up phase is governed by second‐order kinetics. The second slow kinetic step is described by a modified first‐order Langmuir law. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

9.
An appropriate understanding of the process of self‐assembly is of critical importance to tailor nanostructured order on 2D surfaces with functional molecules. Photochromic compounds are promising candidates for building blocks of advanced photoresponsive surfaces. To investigate the relationship between molecular structure and the mechanism of ordering formation, 2‐thienyl‐type diarylethenes with various lengths of alkyl side chains linked through an amide or ester group were synthesized. Their self‐assemblies at a liquid/solid interface were investigated by scanning tunneling microscopy (STM). The concentration dependence of the surface coverage was analyzed by using a cooperative model for a 2D surface based on two characteristic parameters: the nucleation equilibrium constant (Kn) and the elongation equilibrium constant (Ke). The following conclusions can be drawn. 1) The concentration at which a stable 2D molecular ordering is observed by STM exponentially decreases with increasing length of the alkyl chain. 2) Compounds bearing amide groups have higher degrees of cooperativity in self‐assembly on 2D surfaces (i.e., σ, which is defined as Kn/Ke) than compounds with ester groups. 3) The self‐assembly process of the open‐ring isomer of an ester derivative is close to isodesmic, whereas that of the closed‐ring isomer is cooperative because of the difference in equilibrium constants for the nucleation step (i.e., Kn) between the two isomers.  相似文献   

10.
Summary: The infrared absorption (IR) spectrum of alkyl phosphonic acid adsorbed on the α-Al2O3 (0001) surface has been calculated by means of a density-functional based tight-binding method. Thereby mono-dentate, bi-dentate and tri-dentate bonding of the acid to the surface have been considered. In addition, experimentally obtained Fourier Transform Infrared Spectra (FTIR) of octadecylphosphonic acid (ODPA) on the natural surface of aluminium have been included. The absence of the PO band in the experimental surface spectrum and in the calculated spectrum of the tridentate adsorption complexes showed that adsorption of (alkyl)phosphonic acids on aluminium favours tridentate bonding, where the acid is bound to the surface via three symmetric P O Al bonds.  相似文献   

11.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

12.
Despite the numerous studies on the self‐assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol–gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X‐ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol–gold interface. The long‐chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short‐chain alkylthiol SAMs were adsorbed more strongly than long‐chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol–gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single‐molecule adsorption than self‐assembly, whereas for long chains, interactions between alkyl chains drive the system to self‐assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur–gold interface.  相似文献   

13.
Bis(zinc porphyrin) scaffolds bearing C8 or C18 alkyl chains and imidazole end groups self‐assembled in a head‐to‐tail fashion into multi‐porphyrin assemblies on both HOPG and mica. Due to weaker molecule surface‐interactions, longer arrays formed on mica than on HOPG. In both cases, it was essential first to generate monomers that were drop casted on the surface, then to allow time for the bis(zinc porphyrins) to assemble. Although thicker fibrous assemblies were observed with the C8 alkyl substituents than with the longer chains, noncovalent assemblies up to 1 μm long were observed for each molecule. These investigations provide a reproducible, noncovalent method to grow porphyrin arrays that may be of interest in molecular electronics for charge transport.  相似文献   

14.
Our study first focus on two types of corrole dimers oxidized and reduced forms on highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and contact angle measurement (CAM) were used to investigate the self‐assembled monolayers of corrole dimers adsorbed on HOPG surfaces at room temperature in air. XPS and CAM results have confirmed both two molecules adsorbed on an HOPG surface and formed self‐assembled films, and STM experiments found that the corrole dimers adsorbed on HOPG surfaces form similar lobes. The different stable space structure of the oxidized form molecule (OFM) and reduced form molecule (RFM), led to the diversity of the tetramer structural dimensions. The occurrence of molecular aggregations and assembly was controlled by the interactions between molecular–molecular and molecule–substrate. The electrostatic interactions between the molecules control the geometrical sizes and molecule–substrate interactions determine topographical shapes of the self‐assembled corrole dimers on HOPG surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Dilational rheological behaviors of adsorption layers of three surfactants, sodium 2-hydroxy-3,5-dioctyl benzene sulfonate (C8C8), sodium 2-hydroxy-3-octyl-5-decyl benzene sulfonate (C8C10), and sodium 2-hydroxy-3-octyl-5-dodecylbenzenesulfonate (C8C12) formed at air–water and decane–water interfaces, have been investigated as a function of concentration and frequency (0.002–0.1 Hz) by the oscillating bubble/drop method. The experimental results show that the dilational moduli of hydroxy-substituted alkyl benzenesulfonates are obviously higher than those of the common surfactants, because the interfacial interactions between alkyl chains are improved drastically by the unique arrangement of C8C8 molecules at the interface. However, the moduli at the decane–water interface are much lower than those at the surfaces because decane molecules will insert into the surfactant molecules adsorbed at the interface and destroy the interactions between alkyl chains. With an increase in the number of carbon atom of 5-alkyl, the surface dilational modulus decreases because the orientation of the surfactant molecules at the surface varies from parallel to tilt. On the other hand, the diffusion-exchange process dominates the interfacial behavior and the interfacial modulus improves with the increase in the length of the alkyl chain.  相似文献   

16.
This paper reports on the synthesis and self‐organizing properties of monodendrons consisting of L ‐alanine at the focal point and alkyl chains with different length at the periphery. The structures of thin films and monolayers are studied by temperature‐resolved grazing‐incidence X‐ray diffraction and scanning force microscopy. The interplay between H‐bonding and ordering of the alkyl chains results in a rich temperature‐dependent phase behavior. The monodendrons form H‐bonded stabilized clusters with the number of molecules depending on the length of the aliphatic chains and temperature. The clusters play the role of constitutive units in the subsequent self‐assembly. Short alkyl chains allow the material to form thermodynamically stable crystalline phases. The molecules with longer side groups exhibit additional transitions from the crystalline phase to thermotropic columnar hexagonal or columnar rectangular liquid‐crystalline phases. In monolayers deposited on highly ordered pyrolytic graphite, the materials show ordering similar to thin films. However, for the compound bearing hexadecyl chains the affinity of the alkyl groups to graphite dominates the self‐assembly and thereby allows epitaxial growth of a 2D lattice with flat‐on oriented molecules.  相似文献   

17.
The synthesis, self‐assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and π–π stacking between the PBI units directs the formation of the self‐assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self‐assembly were studied by solvent‐ and temperature‐dependent UV‐visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H‐type π stacks and red gels, whereas by introducing branched alkyl chains the formation of J‐type π stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2‐ethylhexyl group completely suppressed the π stacking. Coaggregation studies with H‐ and J‐aggregating chromophores revealed the formation of solely H‐type π stacks containing both precursor molecules at a lower mole fraction of J‐aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H‐aggregate and J‐aggregate were formed simultaneously, which points to a self‐sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)‐ or (S)‐limonene was effective in preferential population of one‐handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.  相似文献   

18.
The adsorption of a range of organic molecules from toluene onto the oxidized surface of magnetron‐sputtered aluminium metal is studied using sessile drop water contact angle measurements. Molecules with different head group functionalities and various chain lengths are considered, including alkyl carboxylic acids, alkyl phosphonic acids, alkyl amines, alkyl trimethoxysilanes, alkyl trichlorosilanes and epoxy alkanes. Alkyl phosphonic and carboxylic acids are identified as readily forming the most well‐packed monolayers on the aluminium surface, whereas the others adsorb less well and the chlorosilanes polymerize as a result of combination with moisture to form a thick deposit. The high‐adsorption‐density monolayers of alkyl phosphonic and carboxylic acids were studied using polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) and x‐ray photoelectron spectroscopy (XPS): PM‐IRRAS reveals relatively poorer ordering of the C10 alkyl carboxylic acid monolayer compared with that formed from the phosphonic acid, and XPS data suggest that this is likely to relate to a lower ability to displace preadsorbed volatile organic compounds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The translational and orientational potential energy surfaces (PESs) of n‐alkanethiols with up to four carbon atoms are studied for (${\sqrt {(3)} }$ ×${\sqrt {(3)} }$ )R30° self‐assembled monolayers (SAMs). The PESs indicate that methanethiol may form SAM structures that are not accessible for long‐chain thiols. The tilt of the thiol molecules is determined by a compromise between the preferred binding geometry at the sulfur atom and the steric requirements of the alkane chains. The Au? S bond lengths, offset from the bridge position (brg), and the Au? S? C bond angles result in tilt angles of the S? C bond in the range of 55–60°. As DFT/generalized gradient approximation systematically underestimates chain–chain interactions, the binding energies are corrected by comparison to MP2 interaction energies of alkane dimers in SAM‐like configurations. The resulting thiol binding energies increase by approximately 1 kcal mol?1 per CH2 group, which results in a substantial stabilization of long‐chain SAMs due to chain–chain interactions. Furthermore, as the chain length increases, the accessible range of backbone tilt angles is constrained due to steric effects. The combination of these two effects may explain why SAM structures with long‐chain thiols exhibit higher order in experiments. For each thiol two favorable SAM structures are found with the sulfur head group at the fcc‐brg and hcp‐brg positions, respectively. These domains may coexist in thermal equilibrium. In combination with the symmetry of the gold (111) surface, this raises the possibility of up to six different domains on single‐crystal terraces. Reconstructions by an adatom or vacancy of ethanethiol SAMs with (${\sqrt {(3)} }$ ×${\sqrt {(3)} }$ )R30° lattice are also studied using PES scans. The results indicate that adsorption of thiols next to a vacancy is favorable and may lead to point defects inside SAMs.  相似文献   

20.
The synthesis of a novel benzimidazole derivative with a long‐chain‐ester substituent, namely methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan‐1‐ol solvate, methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate octan‐1‐ol monosolvate, C22H26N2O3·C8H18O, (4), exhibits a four‐molecule hydrogen‐bonded motif in the solid state, with N—H…O hydrogen bonds between benzimidazole molecules and O—H…N hydrogen bonds between the octan‐1‐ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan‐1‐ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H…C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C—H…π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号