首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

2.
From solutions containing praseodymium perchlorate and periodic acid, three different modifications of [Pr2(ClO4)2(H2I2O10)] · 8 H2O could be obtained. All of them crystallize in the monoclinic system, space group P21/c (α: a = 1091.47(6), b = 728.24(4), c = 1388.84(8) pm, β = 101.420(3)°; β: a = 1169.93(3), b = 728.72(2), c = 1384.50(4) pm, β = 112.303(2)°; γ: a = 1209.56(4), b = 712.53(2), c = 1361.64(5) pm, β = 115.691(1)°). The structures contain Pr3+ cations which are coordinated by [H2I2O10]4— anions yielding two‐dimensional networks. These networks are separated by ClO4 anions yielding a layered structure.  相似文献   

3.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

4.
The title compound, {[Ba3(CHCl2O6P2)2(H2O)4]·H2O}n or {[Ba3(Cl2CP2O6H)(H2O)4]·H2O}n, is two‐dimensional. The asymmetric unit contains three independent Ba2+ atoms, two chelating and bridging Cl2CP2O6H3− ligands and four aqua ligands, connected in layers parallel to the (100) plane. There are pores between the layers in the direction of the b axis filled with lattice water mol­ecules.  相似文献   

5.
Hydrothermal investigations in the system MgO/B2O3/P2O5(/H2O) yielded two new magnesium borophosphates, Mg2(H2O)[BP3O9(OH)4] and Mg(H2O)2[B2P2O8(OH)2]·H2O. The crystal structures were solved by means of single crystal X‐ray diffraction. While the acentric crystal structure of Mg2(H2O)[BP3O9(OH)4] (orthorhombic, P212121 (No. 19), a = 709.44(5) pm, b = 859.70(4) pm, c = 1635.1(1) pm, V = 997.3(3) × 106 pm3, Z = 4) contains 1D infinite chains of magnesium coordination octahedra interconnected by a borophosphate tetramer, Mg(H2O)2[B2P2O8(OH)2]·H2O (monoclinic, P21/c (No. 14), a = 776.04(5) pm, b = 1464.26(9) pm, c = 824.10(4) pm, β = 90.25(1)°, V = 936.44(9) × 106 pm3,Z = 4) represents the first layered borophosphate with 63 net topology. The structures are discussed and classified in terms of structural systematics.  相似文献   

6.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

7.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4.  相似文献   

8.
During phase formation experiments under hydrothermal conditions (250 °C, 5d) in the systems HgO/MXO4/H2O (M = Co, Zn, Cd; X = S, Se), single crystals of the mercuric compounds (CdSO4)2(HgO)2H2O (I), (CdSeO4)2(HgO)2H2O (II), (CdSeO4)Hg(OH)2 (III), (CoSO4)2(HgO)2H2O (IV), (ZnSO4)2(HgO)2H2O (V), (ZnSeO4)2(HgO)2H2O (VI), and the mixed‐valent (ZnSeIVO3)(ZnSeVIO4)HgI2(OH)2 (VII) were obtained. The crystal structure determinations from X‐ray diffraction data revealed four unique structure types for these compounds. I and II crystallise isotypically in space group P2/n (a ≈ 7.85, b ≈ 6.28, c ≈ 10.5Å, β ≈ 102°), compound III crystallises in space group C2/m (a = 10.540(2), b = 9.0120(8), c = 6.1330(12)Å, β = 100.45(3)°), and the isotypic compounds IV, V and VI crystallise in space group Pbcm (a ≈ 6.15, b ≈ 11.3, c ≈ 13.1Å). Common with these three structure types are distorted octahedral [MO6] and tetrahedral XO4 building units which are organised in a layered assembly. Within the layers H bonding of OH groups or H2O molecules of the [MO6] octahedra leads to an additional stabilisation. Adjacent layers are separated by mercury atoms which are linearly bonded to two O atoms at short distances, forming either interconnecting [O‐Hg‐O] units which are part of [O‐Hg‐O] zig‐zag chains, or single [HO‐Hg‐OH] units (realised in compound III). VII is the only compound with mercury in oxidation state +1. It crystallises in space group C2/m (a = 17.342(3), b = 6.1939(10), c = 4.4713(8)Å, β = 90.154(3)°) and is made up of Hg22+ dumbbells, [ZnO4(OH)2] octahedra, and statistically distributed SeVIO4 and SeIVO3 groups as the main building units.  相似文献   

9.
Single crystals of HgII(H4TeVIO6) (colourless to light‐yellow, rectangular plates) and HgI2(H4TeVIO6)(H6TeVIO6)·2H2O (colourless, irregular) were grown from concentrated solutions of orthotelluric acid, H6TeO6, and respective solutions of Hg(NO3)2 and Hg2(NO3)2. The crystal structures were solved and refined from single crystal diffractometer data sets (HgII(H4TeVIO6): space group Pna21, Z = 4, a =10.5491(17), b = 6.0706(9), c = 8.0654(13)Å, 1430 structure factors, 87 parameters, R[F2 > 2σ(F2)] = 0.0180; HgI2(H4TeVIO6)(H6TeVIO6)·2H2O: space group P1¯, Z = 1, a = 5.7522(6), b = 6.8941(10), c = 8.5785(10)Å, α = 90.394(8), β = 103.532(11), γ = 93.289(8)°, 2875 structure factors, 108 parameters, R[F2 > 2σ(F2)] = 0.0184). The structure of HgII(H4TeVIO6) is composed of ribbons parallel to the b axis which are built of [H4TeO6]2— anions and Hg2+ cations held together by two short Hg—O bonds with a mean distance of 2.037Å. Interpolyhedral hydrogen bonding between neighbouring [H4TeO6]2— groups, as well as longer Hg—O bonds between Hg atoms of one ribbon to O atoms of adjacent ribbons lead, to an additional stabilization of the framework structure. HgI2(H4TeVIO6)(H6TeVIO6)·2H2O is characterized by a distorted hexagonal array made up of [H4TeO6]2— and [H6TeO6] octahedra which spread parallel to the bc plane. Interpolyhedral hydrogen bonding between both building units stabilizes this arrangement. Adjacent planes are stacked along the a axis and are connected by Hg22+ dumbbells (d(Hg—Hg) = 2.5043(4)Å) situated in‐between the planes. Additional stabilization of the three‐dimensional network is provided by extensive hydrogen bonding between interstitial water molecules and O and OH‐groups of the [H4TeO6]2— and [H6TeO6] octahedra. Upon heating HgI2(H4TeVIO6)(H6TeVIO6)·2H2O decomposes into TeO2 under formation of the intermediate phases HgII3TeVIO6 and the mixed‐valent HgIITeIV/VI2O6.  相似文献   

10.
Three new alkali metal transition metal sulfate‐oxalates, RbFe(SO4)(C2O4)0.5 · H2O and CsM(SO4)(C2O4)0.5 · H2O (M = Mn, Fe) were prepared through hydrothermal reactions and characterized by single‐crystal X‐ray diffraction, solid state UV/Vis/NIR diffuse reflectance spectroscopy, infrared spectra, thermogravimetric analysis, and powder X‐ray diffraction. The title compounds all crystallize in the monoclinic space group P21/c (no. 14) with lattice parameters: a = 7.9193(5), b = 9.4907(6), c = 8.8090(6) Å, β = 95.180(2)°, Z = 4 for RbFe(SO4)(C2O4)0.5 · H2O; a = 8.0654(11), b = 9.6103(13), c = 9.2189(13) Å, β = 94.564(4)°, Z = 4 for CsMn(SO4)(C2O4)0.5 · H2O; and a = 7.9377(3), b = 9.5757(4), c = 9.1474(4) Å, β = 96.1040(10)°, Z = 4 for CsFe(SO4)(C2O4)0.5 · H2O. All compounds exhibit three‐dimensional frameworks composed of [MO6] octahedra, [SO4]2– tetrahedra, and [C2O4]2– anions. The alkali cations are located in one‐dimensional tunnels.  相似文献   

11.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

12.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

13.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

14.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

15.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

16.
A two-dimensional network compound [Ce(DMF)4(H2O)][α-BW12O40]·H2O·(HDMA)2 (HDMA = protoned dimethylamine, DMF = N,N-dimethylformamide) was synthesized from α-H5BW12O40·nH2O, Ce(NO3)3·6H2O and DMF and characterized by IR, UV spectra and TG-DTA. The result of the X-ray single crystal diffraction indicates that the crystal is monoclinic, space group P21/n, with unit cell dimensional: a = 1.1983(3), b = 2.4216(5), c = 1.9517(4) nm, β = 92.91(3)°, Z = 4, R 1 = 0.07710, wR 2 = 0.1416. Structural analysis indicates that every [Ce(DMF)4(H2O)]3+ building block is surrounded by three adjacent [α-BW12O40]5− polyanions, meanwhile, every [α-BW12O40]5− polyanion interconnects with three neighboring [Ce(DMF)4(H2O)]3+ subunits, by making use of which two-dimensional network structure can be constructed. The result of thermogravimetric analysis manifests that the title compound has two-stage weight loss and the decomposition temperature of the title polyanionic framework is 560°C. The electrochemical analysis shows the title polyanion has three-step redox processes in the pH = 4–7 media.  相似文献   

17.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

18.
19.
By slow evaporation of solutions containing UO2(ClO4)2 and an excess of HClO4, single crystals of [UO2(ClO4)2(H2O)3] ( 1 ) and [UO2(H2O)5](ClO4)2 ( 2 ) were obtained and their structures were determined. From similar solutions prepared from stoichiometric amounts of UO3 and perchloric acid, crystals of [UO2(H2O)5](ClO4)2·2H2O ( 3 ) were obtained. The trihydrate (monoclinic, P21/c, a = 545.44(1) pm, b = 1811.09(5) pm, c = 1032.46(2) pm, β = 90.016(1)°) consists of uranyl ions, which are coordinated by two monodentate perchlorate ions and three water molecules. The pentahydrate (monoclinic, P21/n, a = 529.35(2) pm, b = 1645.43(6) pm, c = 1480.18(6) pm, β = 99.847(1)°) contains uranyl ions coordinated by five water molecules. The same structural unit can be found in the heptahydrate, whose structure was re‐determined (orthorhombic, Pbcn, a = 920.9(3) pm, b = 1067.9(3) pm, c = 1445.7(3) pm). In this structure, two molecules of water of crystallization are present.  相似文献   

20.
Crystals of four amine‐templated layered uranyl selenates, [C2H10N2][(UO2)(SeO4)2(H2O)](H2O) ( 1 ), [CH6N3]2[(UO2)(SeO4)2(H2O)](H2O)1.5 ( 2 ), [C4H12N]2[(UO2)(SeO4)2(H2O)] ( 3 ), and [CH6N3]3[(UO2)2(SeO4)2(H(SeO4)2)](H2O)2 ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The structures of all four compounds have been solved by direct methods. The structures of 1 (monoclinic, C2/c, a = 11.787(2), b = 7.7007(10), c = 16.600(3) Å, β = 102.016(14)°, V = 1473.7(4) Å3, R1 = 0.037 for 1743 unique observed reflections), 2 (monoclinic, C2/c, a = 37.314(4), b = 7.1771(6), c = 13.2054(14) Å, β = 109.267(8)°, V = 3338.4(6) Å3, R1 = 0.088 for 3005 unique observed reflections) and 3 (monoclinic, C2/c, a = 27.212(10), b = 7.372(3), c = 23.113(7) Å, β = 117.75(2)°, V = 4103(3) Å3, R1 = 0.073 for 2111 unique observed reflections) are based on sheets of the composition [(UO2)(SeO4)2(H2O)]2? consisting of pentagonal [UO7]8? pentagonal bipyramids linked via [SeO4]2? tetrahedra. The sheets have the same chemical composition but different topologies. The structure of 4 (orthorhombic, P212121, a = 10.7261(9), b = 13.918(2), c = 18.321(2) Å, V = 2735.1(5) Å3, R1 = 0.050 for 5683 unique observed reflections) contains [(UO2)2(SeO4)2(H(SeO4)2)]3? sheets parallel to (001). In all four structures, the layers are connected via protonated amine and H2O molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号