首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of the X-ray photoelectron and O4,5(Th) X-ray emission spectra of the low-energy (0 …) ∼50eV) electrons of thorium in ThO2 and ThF4 is studied. It is established that both outer (0 … ∼15 eV) and inner (15… ∼50 eV) valence molecular orbitals, which are mostly due to the Th6p and O(F)2s shells of the neighboring thorium atoms and ligands, are formed in these compounds. Translated fromZhumal Struktumoi Khimii, Vol. 39, No. 6, pp. 1052–1058, November–December, 1998.  相似文献   

2.
The structure of the resonant electron emission (REE) spectra of UO2 (REE appears under the excitation with synchrotron radiation near the O4,5(U) absorption edge at ∼100 eV and ∼110 eV) is studied with regard to the X-ray O4,5(U) absorption spectrum of UO2 and a quantitative scheme of molecular orbitals based on the X-ray electron spectroscopy data and the results of a relativistic calculation of the electronic structure of UO2. The structure of the REE spectra of U3O8 and UO2+x is studied for comparison, and the effect of the uranium chemical environment in oxides on it is found. The appearance of such a structure reflects the processes of excitation and decay involving the U5d and electrons of the outer valence MOs (OVMOs, from 0 to ∼13 eV) and inner valence MOs (IVMOs, from ∼13 eV to ∼35 eV) of the studied oxides. It is noted that REE spectra show the partial density of states of U6p and U5f electrons. Based on the structure of REE spectra, it is revealed that U5f electrons directly participate (without losing the f nature) in the chemical bonding of uranium oxides and are delocalized within CMOs (in the middle of the band), which results in the enhancement of the intensity of the REE spectra of CMO electrons during resonances. The U6d electrons are found to be localized near the bottom of the outer valence band and are observed in the REE spectra of the studied oxides as a characteristic maximum at 10.8 eV. It is confirmed that U6p electrons are effectively involved in the formation of IVMOs, which leads to the appearance of the structure in the region of IVMO electron energies during resonances. This structure depends on the chemical environment of uranium in the considered oxides.  相似文献   

3.
Multiconfigurational quantum chemical methods (CASSCF/CASPT2) have been used to study the chemical bond in the actinide diatoms Ac2, Th2, Pa2, and U2. Scalar relativistic effects and spin-orbit coupling have been included in the calculations. In the Ac2 and Th2 diatoms the atomic 6d, 7s, and 7p orbitals are the significant contributors to the bond, while for the two heavier diatoms, the 5f orbitals become increasingly important. Ac2 is characterized by a double bond with a 3Sigmag-(0g+) ground state, a bond distance of 3.64. A, and a bond energy of 1.19 eV. Th2 has quadruple bond character with a 3Dg(1g) ground state. The bond distance is 2.76 A and the bond energy (D0) 3.28 eV. Pa2 is characterized by a quintuple bond with a 3Sigmag-(0g+) ground state. The bond distance is 2.37 A and the bond energy 4.00 eV. The uranium diatom has also a quintuple bond with a 7Og (8g) ground state, a bond distance of 2.43 A, and a bond energy of 1.15 eV. It is concluded that the strongest bound actinide diatom is Pa2, characterized by a well-developed quintuple bond.  相似文献   

4.
SCF Xα MO calculations on the ground state and optical excitation transition states of TiCl4 accurately predict the energies of its UV absorption peaks. Calculations on the Ti2p core ion state and associated transition states indicate that the recently observed low energy (4.0 eV) Ti2p satellite arises from ligand to metal charge transfer excitations while the satellite at high energy (9.4 eV), similar to those previously observed in Ti(IV) compounds, can be attributed to transitions from the highest filled orbitals to empty orbitals with Cl3pTi4s. 4p antibonding character.  相似文献   

5.
A large number of scalar as well as spinor excited states of OsO4, in the experimentally accessible energy range of 3–11 eV, have been captured by time‐dependent relativistic density functional linear response theory based on an exact two‐component Hamiltonian resulting from the symmetrized elimination of the small component. The results are grossly in good agreement with those by the singles and doubles coupled‐cluster linear response theory in conjunction with relativistic effective core potentials. The simulated‐excitation spectrum is also in line with the available experiment. Furthermore, combined with detailed analysis of the excited states, the nature of the observed optical transitions is clearly elucidated. It is found that a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin‐orbit coupling. The possible source for the substantial spin‐orbit splittings of ligand molecular orbitals is carefully examined, leading to a new interpretation on the primary valence photoelectron ionization spectrum of OsO4. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

6.
We have investigated the ground state and the two lowest excited states of the CeF molecule using four-component relativistic multiconfigurational quasidegenerate perturbation theory calculations, assuming the reduced frozen-core approximation. The ground state is found to be (4f(1))(5d(1))(6s(1)), with Omega = 3.5, where Omega is the total electronic angular momentum around the molecular axis. The lowest excited state with Omega = 4.5 is calculated to be 0.104 eV above the ground state and corresponds to the state experimentally found at 0.087 eV. The second lowest excited state is experimentally found at 0.186 eV above the ground state, with Omega = 3.5 based on ligand field theory calculations. The corresponding state having Omega = 3.5 is calculated to be 0.314 eV above the ground state. Around this state, we also have the state with Omega = 4.5. The spectroscopic constants R(e), omega(e), and nu(1-0) calculated for the ground and first excited states are in almost perfect agreement with the experimental values. The characteristics of the CeF ground state are discussed, making comparison with the LaF(+) and LaF molecules. We denote the d- and f-like polarization functions as d(*) and f(*). The chemical bond of CeF is constructed via {Ce(3.6+)(5p(6)d(*0.3)f(*0.1))F(0.6-)(2p(5.6))}(3+) formation, which causes the three valence electrons to be localized at Ce(3.6+).  相似文献   

7.
《Chemical physics letters》1985,120(2):159-162
The numerical procedure of McCullough is used in calculations of Hartree-Fock and MC SCF wavefunctions for ground state of N2. The latter are derived using the complete set of 18 spin and symmetry adapted configurations in the space of MOs that arise from 2p atomic orbitals. An increase in dissociation energy of 0.17 eV is observed when compared to MC SCF calculations in a large basis of Slater-type functions and the same set of configurations. Integrals involving the numerical MC SCF MOs are used in CI calculations in which substitutions involving the 1s and 2s electrons are included. The increase in dissociation energy due to numerical versus basis set valence CI is 0.08 eV. Spectroscopic constants and molecular quadrupole moments are reported.  相似文献   

8.
We study the electronic structure of the ground and several low-lying states of the CeF molecule using Dirac-Fock-Roothaan (DFR) and four-component relativistic single and double excitation configuration interaction (SDCI) calculations in the reduced frozen-core approximation (RFCA). The ground state and two low-lying excited states are calculated to have (4f)1(5d)1(6s)1 configurations with Omega = 3.5, 4.5, and 3.5, and the resulting excitation energies, T0, are, respectively, 0.319 and 0.518 eV. The experimental configurations for these states are the same, although the experimental T0 values are approximately 0.3 eV smaller than those calculated. Experimentally, the red-degraded band was observed to be 2.181 eV above the ground state, having the configuration (4f)1(5d)1(6p)1 with Omega = 4.5. The calculation for this state gives 2.197 eV and configuration (4f)1.0(5d)1.7(6p)0.3 with Omega = 4.5. We found that Omega, Re, and nu(1-0) obtained by CI agree well with experiment. Bonding between the Ce and the F is highly ionic. The 4f, 5d, and 6s valence electrons are localized at the Ce+ ion, because they are attracted by the Ce4+ ion core, and are excluded from the bonding region because of the electronic cloud around the negatively charged fluoride anion. The bonding in the ground and excited states of the CeF molecule is significantly influenced by the 6s and 5d electron distributions between the Ce and the F.  相似文献   

9.
The nature of the chemical bond in UO2 was analyzed taking into account the X-ray photoelectron spectroscopy (XPS) structure parameters of the valence and core electrons, as well as the relativistic discrete variation electronic structure calculation results for this oxide. The ionic/covalent nature of the chemical bond was determined for the UO8 (D4h) cluster, reflecting uranium's close environment in UO2, and the U13O56 and U63O216 clusters, reflecting the bulk of solid uranium dioxide. The bar graph of the theoretical valence band (from 0 to ~35 eV) of XPS spectrum was built such that it was in satisfactory agreement with the experimental spectrum of a UO2 single crystalline thin film. It was shown that unlike the crystal field theory results, the covalence effects in UO2 are significant due to the strong overlap of the U 6p and U 5f atomic orbitals with the ligand orbitals, in addition to the U 6d atomic orbital (AO). A quantitative molecular orbital (MO) scheme for UO2 was built. The contribution of the MO electrons to the chemical bond covalence component was evaluated on the basis of the bond population values. It was found that the electrons of inner valence molecular orbitals (IVMO) weaken the chemical bond formed by the electrons of outer valence molecular orbitals (OVMO) by 32% in UO8 and by 25% in U63O216.  相似文献   

10.
The Pb‐V oxyhalide apatite compounds Pb5(VO4)3X (X=F, Cl, Br, I) were successfully synthesized using a facile solution method and studied with respect to their structural/optical characteristics and electronic band structures. UV‐visible diffuse reflectance spectroscopy, electrochemical analysis and first‐principles calculations showed that the synthesized apatites behaved as n‐type semiconductors, with absorption bands in the UV‐visible region that could be assigned to electron transitions from the valence band to a conduction band formed by hybridized V 3d and Pb 6p orbitals. Among the apatites examined, Pb5(VO4)3I had the smallest band gap of 2.7 eV, due to an obvious contribution of I 5p orbitals to the valence band maximum. Based on its visible light absorption capability, Pb5(VO4)3I generated a continuous anodic photocurrent under visible light (λ>420 nm) in a solution of 0.1 m NaI in acetonitrile.  相似文献   

11.
《Chemical physics》1987,113(2):251-263
Fluoromethane (CH3F) has been studied by binary (e,2e) coincidence spectroscopy at 1200 eV using non-coplanar symmetric kinematics. Separation energy spectra have been determined in the energy range up to 50 eV at azimuthal angles of 0° and 9°. The separation energy spectra and electron momentum distributions measured for the valence orbitals of CH3F and CH3Cl are compared with the results of calculations employing SCF wavefunctions and outer valence as well as extended 2ph—TDA Green function methods. Electron density and momentum density maps have been generated for all valence orbitals of both molecules using the SCF wavefunctions and are used to explain differences in the bonding properties of the halomethanes investigated here.  相似文献   

12.
A survey of recent calculations involving the mixing of Rydberg and valence states in the spectra of molecular systems is undertaken. It is pointed out that when such states undergo curve crossings with one another, minimal energy splittings of 1.0–2.0 eV can occur at the respective 50-50 composition points. The significance of such large interactions between valence and low-lying Rydberg states is considered in terms of the properties of the resulting mixed CI states, particularly with reference to the oscillator strengths for the pertinent ground state transitions and also the spatial extension of the corresponding upper orbitals. It is thereupon argued that such mixings have important consequences in the spectra of a wide variety of systems, including those of O2, ethylene and ethane.  相似文献   

13.
Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock (HF) self-consistent field (SCF) calculations predict the superheavy diatomic ekaplutonium fluoride E126F to be bound with the calculated dissociation energy of 7.44 and 10.46 eV at the predicted E126-F bond lengths of 2.03 and 2.18 Angstroms, respectively. The antibinding effects of relativity to the dissociation energy of E126F are approximately 3 eV. The predicted dissociation energy with both our NR HF and relativistic DF SCF wave functions is fairly large and is comparable to that for very stable diatomics. This is the first case, where in a diatomic, an atom has g orbital (l = 4) occupied in its ground state electronic configuration and such superheavy diatomics would have occupied molecular spinors (orbitals) consisting of g atomic spinors (orbitals). This opens up a whole new field of chemistry where g atomic spinors (orbitals) may be involved in electronic structure and chemical bonding of systems of superheavy elements with Z> or =122.  相似文献   

14.
Fluorination is a proven method for challenging the limits of chemistry, both structurally and electronically. Here we explore computationally how pressures below 300 GPa affect the fluorination of several transition metals. A plethora of new structural phases are predicted along with the possibility for synthesizing four unobserved compounds: TcF7, CdF3, OsF8, and IrF8. The Ir and Os octaflourides are both predicted to be stable as quasi‐molecular phases with an unusual cubic ligand coordination, and both compounds formally correspond to a high oxidation state of +8. Electronic‐structure analysis reveals that otherwise unoccupied 6p levels are brought down in energy by the combined effects of pressure and a strong ligand field. The valence expansion of Os and Ir enables ligand‐to‐metal F 2p→M 6p charge transfer that strengthens M?F bonds and decreases the overall bond polarity. The lower stability of IrF8, and the instability of PtF8 and several other compounds below 300 GPa, is explained by the occupation of M?F antibonding orbitals in octafluorides with a metal‐valence‐electron count exceeding 8.  相似文献   

15.
《Chemical physics》1986,108(2):275-285
The chemisorption of CO on Ni(100) is studied with a cluster model. The calculations suggest that chemisorption changes the nature of the Ni 3d orbitals. The open shell Ni 3d accepts charge from the Ni valence 4s4p orbitals, reducing the open shell 3d character on the Ni. The closed shell Ni 3d orbitals also mix with the Ni valence 4s4p orbitals and donante charnge to the CO; thus helping to maintain the Ni 3d population near 9. These changes should affect the density of 3d states near the Fermi level and the surface magnetic moment. The variation in the bonding with the size of cluster is also discussed.  相似文献   

16.
《Chemical physics》2001,263(2-3):271-278
In valence zeroth-order regular approximation (ZORA) calculations with frozen core approximation, when the basis set optimized to the related scalar relativistic ZORA calculations is used, neglecting the core spin–orbit splitting may result in additional basis set truncation errors. It is found that the error is negligible for most elements except the 6p-block elements. When the basis set is extended by a p-type STO function put on the 6p element atoms with the ζ value proper to 5p1/2 orbitals, the error can be reduced to be negligible. The calculated atomic properties related to valence orbitals can be improved greatly by use of this extended basis set. The frozen core approximation calculations of some molecules containing Tl, Pb and Bi with closed shells show that neglecting the core spin–orbit splitting only slightly affects the calculated bond lengths and bond energies, and the calculated molecular property can also be improved slightly by use of the extended basis sets.  相似文献   

17.
Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.  相似文献   

18.
The electronic structure and ground‐state molecular properties of Pu and Am tetracarbides have been investigated by relativistic multireference calculations using CASSCF/CASPT2 theory as well as by density functional theory in conjunction with relativistic pseudopotentials. The CASSCF/CASPT2 treatment has been extended by spin–orbit coupling effects for selected species using the CAS state‐interaction method. The five atoms can form various structural isomers, from which 12 ones have been identified in our study. The electronic ground state in both molecules corresponds to a planar fan‐type structure of C2v symmetry, in which the actinide atom is connected to a bent C4 moiety. The other structures are much higher in energy, the ones computed in this study appear between 250 and 1050 kJ/mol. The bonding characteristics in the most relevant structures have been analyzed on the basis of the valence molecular orbitals and natural bond orbital analysis. The most stable structures have been characterized by their spectroscopic (vibrational and electron) properties. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
20.
Despite the relatively small size of molecular bromine and iodine, the physicochemical behavior in different solvents is not yet fully understood, in particular when excited‐state properties are sought. In this work, we investigate isolated halogen molecules trapped in clathrate hydrate cages. Relativistic supermolecular calculations reveal that the environment shift to the excitation energies of the (nondegenerate) states and lie within a spread of 0.05 eV, respectively, suggesting that environment shifts can be estimated with scalar‐relativistic treatments. As even scalar‐relativistic calculations are problematic for excited‐state calculations for clathrates with growing size and basis sets, we have applied the subsystem‐based scheme frozen‐density embedding, which avoids a supermolecular treatment. This allows for the calculation of excited states for extended clusters with coupled‐cluster methods and basis sets of triple‐zeta quality with additional diffuse functions mandatory for excited‐state properties, as well as a facile treatment at scalar‐relativistic exact two‐component level of theory for the heavy atoms bromine and iodine. This simple approach yields scalar‐relativistic estimates for solvatochromic shifts introduced by the clathrate cages. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号