首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method for transient advection‐diffusion transport partial differential equations in multiple space dimensions. This method greatly reduces the number of unknowns in conventional collocation method, generates accurate numerical solutions, and allows large time steps to be used in numerical simulations. We perform numerical experiments to show the strong potential of the method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 284–301, 2004  相似文献   

2.
We develop an Eulerian‐Lagrangian discontinuous Galerkin method for time‐dependent advection‐diffusion equations. The derived scheme has combined advantages of Eulerian‐Lagrangian methods and discontinuous Galerkin methods. The scheme does not contain any undetermined problem‐dependent parameter. An optimal‐order error estimate and superconvergence estimate is derived. Numerical experiments are presented, which verify the theoretical estimates.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

3.
Alternating‐Direction Explicit (A.D.E.) finite‐difference methods make use of two approximations that are implemented for computations proceeding in alternating directions, e.g., from left to right and from right to left, with each approximation being explicit in its respective direction of computation. Stable A.D.E. schemes for solving the linear parabolic partial differential equations that model heat diffusion are well‐known, as are stable A.D.E. schemes for solving the first‐order equations of fluid advection. Several of these are combined here to derive A.D.E. schemes for solving time‐dependent advection‐diffusion equations, and their stability characteristics are discussed. In each case, it is found that it is the advection term that limits the stability of the scheme. The most stable of the combinations presented comprises an unconditionally stable approximation for computations carried out in the direction of advection of the system, from left to right in this case, and a conditionally stable approximation for computations proceeding in the opposite direction. To illustrate the application of the methods and verify the stability conditions, they are applied to some quasi‐linear one‐dimensional advection‐diffusion problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

4.
Characteristic methods generally generate accurate numerical solutions and greatly reduce grid orientation effects for transient advection‐diffusion equations. Nevertheless, they raise additional numerical difficulties. For instance, the accuracy of the numerical solutions and the property of local mass balance of these methods depend heavily on the accuracy of characteristics tracking and the evaluation of integrals of piecewise polynomials on some deformed elements generally with curved boundaries, which turns out to be numerically difficult to handle. In this article we adopt an alternative approach to develop an Eulerian‐Lagrangian control‐volume method (ELCVM) for transient advection‐diffusion equations. The ELCVM is locally conservative and maintains the accuracy of characteristic methods even if a very simple tracking is used, while retaining the advantages of characteristic methods in general. Numerical experiments show that the ELCVM is favorably comparable with well‐regarded Eulerian‐Lagrangian methods, which were previously shown to be very competitive with many well‐perceived methods. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

5.
A family of ELLAM (Eulerian–Lagrangian localized adjoint method) schemes is developed and analyzed for linear advection-diffusion-reaction transport partial differential equations with any combination of inflow and outflow Dirichlet, Neumann, or flux boundary conditions. The formulation uses space-time finite elements, with edges oriented along Lagrangian flow paths, in a time–stepping procedure, where space-time test functions are chosen to satisfy a local adjoint condition. This allows Eulerian–Lagrangian concepts to be applied in a systematic mass-conservative manner, yielding numerical schemes defined at each discrete time level. Optimal-order error estimates and superconvergence results are derived. Numerical experiments are performed to verify the theoretical estimates. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 739–780, 1998  相似文献   

6.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method (ELSCM) with piecewise‐cubic Hermite polynomials as basis functions for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The method is relatively easy to formulate. Numerical experiments are presented to show the strong potential of this method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 271–283, 2003.  相似文献   

8.
In this article, we analyze the modified method of characteristics (MMOC) and an improved version of the MMOC, named the modified method of characteristics with adjusted advection (MMOCAA), for multidimensional advection‐reaction transport equations in a uniform manner. We derive an optimal‐order error estimate for these schemes. Numerical results are presented to verify the theoretical estimates. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 69–84, 2002  相似文献   

9.
An artificial‐viscosity finite‐difference scheme is introduced for stabilizing the solutions of advection‐diffusion equations. Although only the linear one‐dimensional case is discussed, the method is easily susceptible to generalization. Some theory and comparisons with other well‐known schemes are carried out. The aim is, however, to explain the construction of the method, rather than considering sophisticated applications. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 581–588, 1999  相似文献   

10.
We compare and investigate the performance of the exact scheme of the Michaelis–Menten (M–M) ordinary differential equation with several new nonstandard finite difference (NSFD) schemes that we construct using Mickens' rules. Furthermore, the exact scheme of the M–M equation is used to design several dynamically consistent NSFD schemes for related reaction‐diffusion equations, advection‐reaction equations, and advection‐reaction‐diffusion equations. Numerical simulations that support the theory and demonstrate computationally the power of NSFD schemes are presented. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
We develop an Eulerian‐Lagrangian substructuring domain decomposition method for the solution of unsteady‐state advection‐diffusion transport equations. This method reduces to an Eulerian‐Lagrangian scheme within each subdomain and to a type of Dirichlet‐Neumann algorithm at subdomain interfaces. The method generates accurate and stable solutions that are free of artifacts even if large time‐steps are used in the simulation. Numerical experiments are presented to show the strong potential of the method. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:565–583, 2001  相似文献   

12.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

13.
A boundary element method (BEM) approach has been developed to solve the time‐dependent 1D advection‐diffusion equation. The 1D solution is part of a 3D numerical scheme for solving advection‐diffusion (AD) problems in fractured porous media. The full 3D scheme includes a 3D solution for the porous matrix, which is coupled with a 2D solution for fractures and a 1D solution for fracture intersections. As the hydraulic conductivity of the fracture intersections is usually higher than the hydraulic conductivity of the fractures and by at least one order of magnitude higher than the hydraulic conductivity of the porous matrix, the fastest flow and solute transport occurs in the fracture intersections. Therefore it is important to have an accurate and stable 1D solution of the transient AD problems. This article presents two different 1D BEM formulations for solution of the AD problems. The particular advantage of these formulations is that they provide one of the most straightforward and simplest ways to couple multiple intersecting 2D Boundary Element problems discretized with linear discontinuous elements. Both formulations are tested and compared for accuracy, stability, and consistency. The analysis helps to select the more suitable formulations according to the properties of the problem under consideration. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

14.
In this article, a new stabilized finite element method is proposed and analyzed for advection‐diffusion‐reaction equations. The key feature is that both the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number are reasonably incorporated into the newly designed stabilization parameter. The error estimates are established, where, up to the regularity‐norm of the exact solution, the explicit‐dependence of the diffusivity, advection, reaction, and mesh size (or the dependence of the mesh‐dependent Péclet number and the mesh‐dependent Damköhler number) is revealed. Such dependence in the error bounds provides a mathematical justification on the effectiveness of the proposed method for any values of diffusivity, advection, dissipative reaction, and mesh size. Numerical results are presented to illustrate the performance of the method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 616–645, 2016  相似文献   

15.
A numerical method for convection dominated diffusion problems, that exploits the use of characteristics, is derived and analyzed. It is shown to preserve positivity of solutions and be locally mass conserving. Stability, consistency and order one convergence are verified. Because of the way in which it determines characteristic pre‐images of grid cells, the method can be easily implemented for 1‐, 2‐, or 3‐dimensional problems on rectangular grids.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

16.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

17.
We develop a mass conservative Eulerian‐Lagrangian control volume scheme (ELCVS) for the solution of the transient advection‐diffusion equations in two space dimensions. This method uses finite volume test functions over the space‐time domain defined by the characteristics within the framework of the class of Eulerian‐Lagrangian localized adjoint characteristic methods (ELLAM). It, therefore, maintains the advantages of characteristic methods in general, and of this class in particular, which include global mass conservation as well as a natural treatment of all types of boundary conditions. However, it differs from other methods in that class in the treatment of the mass storage integrals at the previous time step defined on deformed Lagrangian regions. This treatment is especially attractive for orthogonal rectangular Eulerian grids composed of block elements. In the algorithm, each deformed region is approximated by an eight‐node region with sides drawn parallel to the Eulerian grid, which significantly simplifies the integration compared with the approach used in finite volume ELLAM methods, based on backward tracking, while retaining local mass conservation at no additional expenses in terms of accuracy or CPU consumption. This is verified by numerical tests which show that ELCVS performs as well as standard finite volume ELLAM methods, which have previously been shown to outperform many other well‐received classes of numerical methods for the equations considered. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

18.
19.
Second order finite difference schemes for fractional advection–diffusion equations are considered in this paper. We note that, when studying these schemes, advection terms with coefficients having the same sign as those of diffusion terms need additional estimates. In this paper, by comparing generating functions of the corresponding discretization matrices, we find that sufficiently strong diffusion can dominate the effects of advection. As a result, convergence and stability of schemes are obtained in this situation.  相似文献   

20.
We prove an optimal‐order error estimate in a weighted energy norm for the modified method of characteristics (MMOC) and the modified method of characteristics with adjusted advection (MMOCAA) for two‐dimensional time‐dependent advection‐diffusion equations, in the sense that the generic constants in the estimates depend on certain Sobolev norms of the true solution but not on the scaling diffusion parameter ε. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号