首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyanate ester (PT‐15, Lonza Corp) composites containing the inorganic–organic hybrid polyhedral oligomeric silsesquioxane (POSS) octaaminophenyl(T8)POSS [ 1 ; (C6H4NH2)8(SiO1.5)8] were synthesized. These PT‐15/POSS‐ 1 composites (99/1, 97/3, and 95/5 w/w) were characterized by X‐ray diffraction (XRD), transmission election microscopy (TEM), dynamic mechanical thermal analysis, solvent extraction, and Fourier transform infrared. The glass‐transition temperatures (Tg's) of the composite with 1 wt % 1 increased sharply versus the neat PT‐15, but 3 and 5 wt % 1 in these cyanate ester composites depressed Tg. All the PT‐15/POSS composites exhibited higher storage modulus (E′) values (temperature > Tg) than the parent resin, but these values decreased from 1 to 5 wt % POSS. The loss factor peak intensities decreased and their widths broadened upon the incorporation of POSS. XRD, TEM, and IR data were all consistent with the molecular dispersion of 1 due to the chemical bonding of the octaamino POSS‐ 1 macromer into the continuous cyanate ester network phase. The amino groups of 1 reacted with cyanate ester functions at lower temperatures than those at which cyanate ester curing by cyclotrimerization occurred. In contrast to 1 , 3‐cyanopropylheptacyclopentyl(T8)POSS [ 2 ; (C5H9)7(SiO1.5)8CH2CH2CH2CN] had low solubility in PT‐15 and did not react with the resin below or at the cure temperature. Thus, phase‐separated aggregates of 2 were found in samples containing 1–10 wt % 2 . Nevertheless, the Tg and E′ values (temperature > 285 °C) of these composites increased regularly with an increase in 2 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3887–3898, 2005  相似文献   

2.
Poly[isobutyl methacrylate‐co‐butanediol dimethacrylate‐co‐3‐methacrylylpropylheptaisobutyl‐T8‐polyhedral oligomeric silsesquioxane] [P(iBMA‐co‐BDMA‐co‐MA‐POSS)] nanocomposites with different crosslink densities and different polyhedral oligomeric silsesquioxane (MA‐POSS) percentages (5, 10, 15, 20, and 30 wt %) were synthesized by radical‐initiated terpolymerization. Linear [P(iBMA‐co‐MA‐POSS)] copolymers were also prepared. The viscoelastic properties and morphologies were studied by dynamic mechanical thermal analysis, confocal microscopy, and transmission electron microscopy (TEM). The viscoelastic properties depended on the crosslink density. The dependence of viscoelastic properties on MA‐POSS content at a low BDMA loading (1 wt %) was similar to that of linear P(iBMA‐co‐MA‐POSS) copolymers. P(iBMA‐co‐1 wt % BDMA‐co‐10 wt % MA‐POSS) exhibited the highest dynamic storage modulus (E′) values in the rubbery region of this series. The 30 wt % MA‐POSS nanocomposites with 1 wt % BDMA exhibited the lowest E′. However, the E′ values in the rubbery region for P(iBMA‐co‐3 wt % BDMA‐co‐MA‐POSS) nanocomposites with 15 and 30 wt % MA‐POSS were higher than those of the parent P(iBMA‐co‐3 wt % BDMA) resin. MA‐POSS raised the E′ values of all P(iBMA‐co‐ 5 wt % BDMA‐co‐MA‐POSS) nanocomposites in the rubbery region above those of P(iBMA‐co‐5 wt % BDMA), but MA‐POSS loadings < 15 wt % had little influence on glass‐transition temperatures (Tg's) and slightly reduced Tg values with 20 or 30 wt % POSS. Heating history had little influence on viscoelastic properties. No POSS aggregates were observed for the P(iBMA‐co‐1 wt % BDMA‐co‐MA‐POSS) nanocomposites by TEM. POSS‐rich particles with diameters of several micrometers were present in the nanocomposites with 3 or 5 wt % BDMA. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 355–372, 2005  相似文献   

3.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

4.
As new bio‐based epoxy resin systems, glycerol polyglycidyl ether (GPE) and sorbitol polyglycidyl ether (SPE) were cured with tannic acid (TA) at various conditions. When the curing conditions were optimized for the improvement of thermal and mechanical properties, the most balanced properties were obtained for the GPE/TA and SPE/TA cured at 160 °C for 2–3 h at the epoxy/hydroxyl ratio of 1/1. The cured SPE/TA had a higher glass transition temperature (Tg) and tensile strength than the cured GPE/TA. Next, biocomposites of GPE/TA and SPE/TA with microfibrillated cellulose (MFC) were prepared by mixing aqueous solution of the epoxy/curing reagent with MFC, and subsequent drying and curing at the optimized condition. For both the GPE/TA/MFC and SPE/TA/MFC biocomposites, Tg and the storage modulus at rubbery plateau region increased with increasing MFC content over the studied range of 3–15 wt %. The tensile strength at 25 °C for GPE/TA/MFC biocomposite with MFC content 10 wt % was 76% higher than that of control GPE/TA, while the tensile modulus was little improved. On the other hand, the tensile strength and modulus of SPE/TA/MFC biocomposite with MFC content 10 wt % were 30 and 55% higher than those of control SPE/TA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 425–433, 2010  相似文献   

5.
The thermophysical and mechanical properties of a nanocomposite material composed of amine‐cured diglycidyl ether of bisphenol A (DGEBA) reinforced with organomontmorillonite clay are reported. The storage modulus at 100 °C, which was above the glass‐transition temperature (Tg), increased approximately 350% with the addition of 10 wt % (6.0 vol %) of clay. Below the Tg, the storage modulus at 30 °C increased 50% relative to the value of unfilled epoxy. It was determined that the Tg linearly increased as a function of clay volume percent. The tensile modulus of epoxy at room temperature increased approximately 50% with the addition of 10 wt % of clay. The reinforcing effect of the organoclay nanoplatelets is discussed with respect to the Tandon–Weng and Halpin–Tsai models. A pseudoinclusion model is proposed to describe the behavior of randomly oriented, uniformly dispersed platelets in nanocomposite materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4391–4400, 2004  相似文献   

6.
Ring‐opening metathesis copolymerizations of cyclooctene and the polyhedral oligomeric silsesquioxane (POSS) monomer 1‐[2‐(5‐norbornen‐2‐yl)ethyl]‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo[9.5.1.13,9.15,15.17,13] octasiloxane (POSS–norbornylene) were performed with Grubbs's catalyst, RuCl2(?CHPh)(PCy3)2. Random copolymers were formed and fully characterized with POSS loadings as high as 55 wt %. Diimide reduction of these copolymers afforded polyethylene–POSS random copolymers. Thermogravimetric analysis of the polyethylene–POSS copolymers under air showed a 70 °C improvement, relative to a polyethylene control sample of similar molecular weight, in the onset of decomposition temperature based on 5% mass loss. The homopolymer of POSS–norbornylene was also synthesized. This polymer had a rigid backbone according to 1H NMR evidence of broad olefinic signals. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2920–2928, 2001  相似文献   

7.
This article presents a new type of epoxy‐toughening system, in which high‐Tg polyaryletherketone (PEK‐L) containing one carboxyl group per repeating unit was utilized to randomly copolymerize with epoxy resin (DGEBA) to form crosslinking network. Compared to the neat epoxy resin, the PEK‐L/DGEBA copolymers showed simultaneous enhancement in flexural strains at break by 282%, GIC value by 193%, and flexural strength by 14%. The reason was attributed to the uniform three‐dimensional copolymer network interweaved by PEK‐L and DGEBA segments through strong covalent bonds. The copolymerization process were monitored and examined by FTIR spectra. The effect of copolymer composition on the thermal and mechanical properties as well as toughening mechanism were also investigated and discussed in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
Epoxy/polyhedral oligometric silsesquioxane (POSS) hybrid materials, containing 50 wt % POSS and exhibiting good homogeneity, were obtained in a two‐step preparation. Monoamine‐functionalized POSS was first reacted with diglycidyl ether of bisphenol A to form an epoxy POSS precursor, which was then cured. Curing agents such as 4,4′‐diaminodiphenylmethane, dicyandiamide (DICY), and diethylphosphite (DEP) were used for the synthesis of the epoxy–POSS hybrid materials. The use of small‐molecule curing agents, such as DICY and DEP, efficiently avoided macrophase separations and enhanced the thermal properties of the hybrid materials. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1869–1876, 2006  相似文献   

9.
Hydrogen bonding interactions, phase behavior, crystallization, and surface hydrophobicity in nanostructured blend of bisphenol A‐type epoxy resin (ER), for example, diglycidyl ether of bisphenol A (DGEBA) and poly(ε‐caprolactone)‐block‐poly(dimethyl siloxane)‐block‐poly(ε‐caprolactone) (PCL–PDMS–PCL) triblock copolymer were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, transmission electron microscopy, small‐angle X‐ray scattering, and contact angle measurements. The PCL–PDMS–PCL triblock copolymer consisted of two epoxy‐miscible PCL blocks and an epoxy‐immiscible PDMS block. The cured ER/PCL–PDMS–PCL blends showed composition‐dependent nanostructures from spherical and worm‐like microdomains to lamellar morphology. FTIR study revealed the existence of hydrogen bonding interactions between the PCL blocks and the cured epoxy, which was responsible for their miscibility. The overall crystallization rate of the PCL blocks in the blend decreased remarkably with increasing ER content, whereas the melting point was slightly depressed in the blends. The surface hydrophobicity of the cured ER increased upon addition of the block copolymer, whereas the surface free energy (γs) values decreased with increasing block copolymer concentration. The hydrophilicity of the epoxy could be reduced through blending with the PCL–PDMS–PCL block copolymer that contained a hydrophobic PDMS block. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 790–800, 2010  相似文献   

10.
The synergism in the glass‐transition temperature (Tg) of ternary systems based on benzoxazine (B), epoxy (E), and phenolic (P) resins is reported. The systems show the maximum Tg up to about 180 °C in BEP541 (B/E/P = 5/4/1). Adding a small fraction of phenolic resin enhances the crosslink density and, therefore, the Tg in the copolymers of benzoxazine and epoxy resins. To obtain the ultimate Tg in the ternary systems, 6–10 wt % phenolic resin is needed. The molecular rigidity from benzoxazine and the improved crosslink density from epoxy contribute to the synergistic behavior. The mechanical relaxation spectra of the fully cured ternary systems in a temperature range of −140 to 350 °C show four types of relaxation transitions: γ transition at −80 to −60 °C, β transition at 60–80 °C, α1 transition at 135–190 °C, and α2 transition at 290–300 °C. The partially cured specimens show an additional loss peak that is frequency‐independent as a result of the further curing process of the materials. The ternary systems have a potential use as electronic packaging molding compounds as well as other highly filled systems. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1687–1698, 2000  相似文献   

11.
The reactive blending composites of isotactic polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (POSS) were prepared in the presence of dicumyl peroxide. Comparison of the rheological behavior of physical and reactive blending composites was made by oscillatory rheological measurements. It was found that the viscosity of physical blending composites drops at lower POSS content (0.5–1 wt %) and thereafter increases with increasing POSS content; that of reactive blending composites increases with increasing POSS content and displays a solid‐like rheological behavior at low frequency region when POSS content is higher than 1 wt %. The deviation of reactive blending composites from the scaling log G′–log G″ of linear polymer in Han plot, upturning at high viscosity in Cole–Cole plot, and from van Gurp–Palmen plot are related to the gelation behavior reactively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 526–533, 2008  相似文献   

12.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

13.
We have developed an efficient and versatile method for the synthesis of polyhedral oligomeric silsesquioxanes (POSS)‐polymethacrylate hybrids, such as POSS‐poly(methyl methacrylate) (POSS‐PMMA), POSS‐poly(ethyl methacrylate) (POSS‐PEMA), and POSS‐poly(benzyl methacrylate) (POSS‐PBzMA) of controllable molecular weights and low polydispersities by thiol‐mediated radical polymerization at elevated temperature (100 °C). By tuning the reactant concentrations and degree of polymerization of the grafted polymethacrylate chains, POSS content in these hybrid materials could be varied. MALDI‐TOF‐MS analysis of the hybrid molecule shows that the nanoscale POSS moiety is connected to the end of polymethacrylate chain through the sulfur atom bridge. These hybrid materials were further characterized using various techniques such as FTIR, XRD, NMR, TGA, and DSC. In all synthesized hybrids, the incorporation of POSS moiety at the end of polymethacrylate chain resulted in the decrease of glass transition temperature (Tg) compared to that of neat polymethacrylates of comparable molecular weights. Surprisingly, POSS‐PMMA hybrids only with relatively high POSS content (~ 10 and 16 wt %) showed physical aging behavior as reveled by DSC study. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1111–1123, 2008  相似文献   

14.
The miscibility of a phenolic resin with polyhedral oligomeric silsesquioxane (POSS) hybrids and the specific interactions between them were investigated with Fourier transform infrared (FTIR) spectroscopy and wide‐angle X‐ray diffraction (WAXD). An analysis of the morphology and microstructure was performed with polarized optical microscopy and atomic force microscopy (AFM). The interassociation equilibrium constant between the phenolic resin and POSS (38.7) was lower than the self‐association equilibrium constant of pure phenolic (52.3) according to the Painter–Coleman association model. This result indicated that POSS was partially miscible with the phenolic resin. A polarized optical microscopy image of a phenolic/POSS hybrid material (20 wt % POSS) indicated that the crystals of POSS were arranged evenly in the phenolic matrix; the self‐assembled array of POSS crystals was also confirmed by AFM. This phenomenon was consistent with the FTIR spectroscopy and WAXD analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1127–1136, 2004  相似文献   

15.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

16.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

17.
The synthesis, micelle formation, and bulk properties of semifluorinated amphiphilic poly(ethylene glycol)‐b‐poly(pentafluorostyrene)‐g‐cubic polyhedral oligomeric silsesquioxane (PEG‐b‐PPFS‐g‐POSS) hybrid copolymers is reported. The synthesis of amphiphilic PEG‐b‐PPFS block copolymers are achieved using atom transfer radical polymerization (ATRP) at 100 °C in trifluorotoluene using modified poly(ethylene glycol) as a macroinitiator. Subsequently, a proportion of the reactive para‐F functionality on the pentafluorostyrene units was replaced with aminopropylisobutyl POSS through aromatic nucleophilic substitution reactions. The products were fully characterized by 1H‐NMR and GPC. The products, PEG‐b‐PPFS and PEG‐b‐PPFS‐g‐POSS, were subsequently self‐assembled in aqueous solutions to form micellar structures. The critical micelle concentrations (cmc) were estimated using two different techniques: fluorescence spectroscopy and dynamic light scattering (DLS). The cmc was found to decrease concomitantly with the number of POSS particles grafted per copolymer chain. The hydrodynamic particle sizes (Rh) of the micelles, calculated from DLS data, increase as the number of POSS molecules grafted per copolymer chain increases. For example, Rh increased from ~60 nm for PEG‐b‐PPFS to ~80 nm for PEG‐b‐PPFS‐g‐POSS25 (25 is the average number of POSS particles grafted copolymer chain). Static light scattering (SLS) data confirm that the formation of larger micelles by higher POSS containing copolymers results from higher aggregation numbers (Nagg), caused by increased hydrophobicity. The Rg/Rh values, where Rg is the radius of gyration calculated from SLS data, are consistent with a spherical particle model having a core‐shell structure. Thermal characterization by differential scanning calorimetry (DSC) reveals that the grafted POSS acts as a plasticizer; the glass transition temperature (Tg) of the PPFS block in the copolymer decreases significantly with increasing POSS content. Finally, the rhombohedral crystal structure of POSS in PEG‐b‐PPFS‐g‐POSS was verified by wide angle X‐ray diffraction measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 152–163, 2010  相似文献   

18.
Organic–inorganic hybrid diblock copolymers composed of poly(ε‐caprolactone) and poly(MA POSS) [PCL‐b‐P(MA POSS)] were synthesized via reversible addition‐fragmentation chain transfer polymerization of 3‐methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MA POSS) with dithiobenzoate‐terminated poly(ε‐caprolactone) as the macromolecular chain transfer agent. The dithiobenzoate‐terminated poly(ε‐caprolactone) (PCL‐CTA) was synthesized via the atom transfer radical reaction of 2‐bromopropionyl‐terminated PCL with bis(thiobenzoyl)disulfide in the presence of the complex of copper (I) bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine. The results of molecular weights and polydispersity indicate that the polymerizations were in a controlled fashion. The organic–inorganic diblock copolymer was incorporated into epoxy to afford the organic–inorganic nanocomposites. The nanostructures of the organic–inorganic composites were investigated by means of transmission electron microscopy and dynamic mechanical thermal analysis. Thermogravimetric analysis shows that the organic–inorganic nanocomposites displayed the increased yields of degradation residues compared to the control epoxy. In the organic–inorganic nanocomposites, the inorganic block [viz., P(MA POSS)] had a tendency to enrich at the surface of the materials and the dewettability of surface for the organic–inorganic nanocomposites were improved in terms of the measurement of surface contact angles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
The exfoliated montmorillonite (MMT) nanoplatelets tended to re‐stack with each other after casting the MMT/poly(methylacrylate‐co‐methylmethacrylate) P(MA‐co‐MMA) latex solutions fabricated by soap‐free emulsion polymerization into films as revealed by X‐ray diffraction and transmission electron microscopy. As the content of MMT was increased from 0 to 20 wt %, the Tg measured by differential scanning calorimetry was slightly decreased from 19.2 to 17.2 °C, whereas that measured by dynamic mechanical analysis was increased from 22 to 32 °C, indicating that the local motion of polymer segments has been retarded by MMT nanoplatelets. Besides, the elongated elliptical voids appeared during stretching of 1 wt % MMT/P(MA‐co‐MMA) film to cracking also illustrated the pinning effect provided by the exfoliated MMT. As the content of MMT was increased more than 10 wt %, the mechanical behavior of MMT/P(MA‐co‐MMA) nanocomposite films was changed from ductile to brittle nature with significant increase of Young's modulus and tensile strength owing to the restacking of exfoliated MMT nanoplatelets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1064–1069, 2010  相似文献   

20.
The phase behavior of uncured and cured mixtures containing stoichiometric amounts of Epon164 novolac epoxy resin and 4,4′‐methylenedianiline combined with a nearly symmetric poly(methyl acrylate‐co‐glycidyl methacrylate‐b‐polyisoprene) diblock copolymer was investigated with small‐angle X‐ray scattering and transmission electron microscopy. A series of morphologies were documented as a function of the copolymer concentration, which ranged from pure diblock to 2.5 wt % in the thermoset resin. Ordered lamellae bordered a wide multiphase region followed by disordered wormlike micelles that transformed continuously into vesicles at the lowest compositions. The thermal curing of this pentafunctional epoxy system to complete conversion had little impact on the phase behavior of the mixtures, and this was consistent with previous experiments with difunctional epoxy and the same hardening agent. However, changing the epoxy component led to gross changes in the phase behavior that were interpreted with the concept of a wet‐to‐dry brush transition. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1994–2003, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号