首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, efficient method for synthesizing stable nanoparticles with poly(ethylene oxide) (PEO) functionalities on the core surface, in which the micellization and crosslinking reactions occur in one pot, has been developed. First, amphiphilic PEO‐b‐PS copolymers were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization of styrene using (PEO)‐based trithiocarbonate as a macro‐RAFT agent. The low molecular weight PEO‐b‐PS copolymer was dissolved in isopropyl alcohol where the block copolymer self‐assembled as core‐shell micelles, and then the core‐shell interface crosslink was performed using divinylbenzene as a crosslinking agent and 2,2′‐azobisisobutyronitrile as an initiator. The design of the amphiphilic RAFT agent is critical for the successful preparation of core‐shell interface crosslinked micellar nanoparticles, because of RAFT functional groups interconnect PEO and polystyrene blocks. The PEO functionality of the nanoparticles surface was confirmed by 1H NMR and FTIR. The size and morphology of the nanoparticles was confirmed by scanning electron microscopy, transmission electron microscopy, and dynamic laser light scattering analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

3.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

4.
An amphiphilic multiblock copolymer [poly(ethylene oxide)‐b‐polystyrene]n [(PEO‐b‐PS)n] is synthesized by using trithiocarbonate‐embedded PEO as macro‐RAFT agent. PEO with four inserted trithiocarbonate (Mn = 9200 and Mw/Mn = 1.62) groups is prepared first by condensation of α, ω‐dihydroxyl poly(ethylene oxide) with S, S′‐Bis(α, α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDATC) in the presence of pyridine, then a series of goal copolymers with different St units (varied from 25 to 218 per segment) are obtained by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The synthesis process is monitored by size exclusion chromatography (SEC), 1H NMR and FT‐IR. The self‐assembled morphologies of the copolymers are strongly dependent of the length of PS block chains when the chain length of PEO is fixed, some new morphologies as large leaf‐like aggregates (LLAs), large octopus‐like aggregates (LOAs), and coarse‐grain like micelles (CGMs) are observed besides some familiar aggregates as large compound vesicles (LCVs), lamellae and rods, and the effect of water content on the morphologies is also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6071–6082, 2006  相似文献   

5.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

6.
Using sequential RAFT polymerization, single monomer insertion, and “click” chemistry, a series of triblock copolymers, poly(ethylene oxide)‐b‐polystyrene‐b‐poly(ethylene oxide), PEO‐b‐PS‐b‐PEO, were synthesized, where one of the two junction points is a UV cleavable ortho‐nitrobenzyl (ONB). Ordered patterns of PEO‐b‐PS‐b‐PEO were produced by solvent vapor annealing. Upon exposure to ultraviolet (UV) light, the PEO‐b‐PS‐b‐PEO was converted into a mixture of a PEO homopolymer and a PS‐b‐PEO diblock copolymer. It was found that the microdomain spacing could be tuned by adjusting the UV exposure time, due to the change in the copolymer architecture and the swelling of the PEO microdomain by the PEO homopolymer produced. By selective area exposure of the PEO‐b‐PS‐b‐PEO thin films, the domain spacing was changed over selected locations across the film, generating patterns of different microdomain sizes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 355–361.  相似文献   

7.
Characterization of block size in poly(ethylene oxide)‐b‐poly(styrene) (PEO‐b‐PS) block copolymers could be achieved by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) after scission of the macromolecules into their constituent blocks. The performed hydrolytic cleavage was demonstrated to specifically occur on the targeted ester function in the junction group, yielding two homopolymers consisting of the constitutive initial blocks. This approach allows the use of well‐established MALDI protocols for a complete copolymer characterization while circumventing difficulties inherent to amphiphilic macromolecule ionization. Although the labile end‐group in PS homopolymer was modified by the MALDI process, PS block size could be determined from MS data since polymer chains were shown to remain intact during ionization. This methodology has been validated for a PEO‐b‐PS sample series, with two PEO of number average molecular weight (Mn) of 2000 and 5000 g mol?1 and Mn(PS) ranging from 4000 to 21,000 g mol?1. Weight average molecular weight (Mw), and thus polydispersity index, could also be reached for each segment and were consistent with values obtained by size exclusion chromatography. This approach is particularly valuable in the case of amphiphilic copolymers for which Mn values as determined by liquid state nuclear magnetic resonance might be affected by micelle formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3380–3390, 2009  相似文献   

8.
Three amphiphilic rod‐coil diblock copolymers, poly(2‐ethyl‐2‐oxazoline‐b‐γ‐benzyl‐L ‐glutamate) (PEOz‐b‐PBLG), incorporating the same‐length PEOz block length and various lengths of their PBLG blocks, were synthesized through a combining of living cationic and N‐carboxyanhydride (NCA) ring‐opening polymerizations. In the bulk, these block copolymers display thermotropic liquid crystalline behavior. The self‐assembled aggregates that formed from these diblock copolymers in aqueous solution exhibited morphologies that differed from those obtained in α‐helicogenic solvents, that is, solvents in which the PBLG blocks adopt rigid α‐helix conformations. In aqueous solution, the block copolymers self‐assembled into spherical micelles and vesicular aggregates because of their amphiphilic structures. In helicogenic solvents (in this case, toluene and benzyl alcohol), the PEOz‐b‐PBLG copolymers exhibited rod‐coil chain properties, which result in a diverse array of aggregate morphologies (spheres, vesicles, ribbons, and tube nanostructures) and thermoreversible gelation behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3108–3119, 2008  相似文献   

9.
A combination of anionic and nitroxide‐mediated radical polymerizations (dual initiator) was employed for the synthesis of poly(n‐hexyl isocyanate‐bN‐vinylpyrrolidone) (PHIC‐b‐PNVP) block copolymers. The samples were characterized with a size exclusion chromatograph equipped with refractive‐index and light scattering detectors as well as 1H NMR spectroscopy. Relatively good control over the molecular weights was achieved. However, rather broad molecular weight distributions were obtained. The micellar properties of the PHIC‐b‐PNVP block copolymers were studied in water, which is a selective solvent for the poly(N‐vinylpyrrolidone) blocks. Static and dynamic light scattering revealed the presence of equilibrium between the micelles and clusters. The clusters partially deaggregated with increasing temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5719–5728, 2006  相似文献   

10.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Main‐chain imidazolium‐functionalized amphiphilic block copolymers (PIL‐b‐PS) consisting of polyionic liquid (PIL) and polystyrene (PS) blocks have been first synthesized by condensation polymerization combined with nitroxide‐mediated free radical polymerization (NMP). The di‐functional imidazolium‐based ionic liquid (IL) having both hydroxyl and ester end groups was synthesized through Michael addition between imidazole and methylacrylate (MA) and further quaternization by 2‐chloroethanol. The HTEMPO (4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy) terminated polyionic liquid (HTEMPO‐PIL) as the hydrophilic block was prepared by condensation polymerization of di‐functional imidazolium IL and HTEMPO at a certain ratio. The hydrophobic PS block was synthesized by controlled radical polymerization of styrene using HTEMPO‐PIL through NMP, resulting PIL‐b‐PS block copolymers. The structure of block copolymers obtained has been characterized and verified by FTIR, 1H NMR, and size exclusion chromatography analyses. In addition, the morphology and size of the micelles formed by PIL‐b‐PS block copolymers in water were investigated by transmission electron microscopy and dynamic light scattering. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A series of star‐block poly(L ‐lactide)‐b‐poly(ethylene oxide) (SPLLA‐b‐PEO) copolymers were synthesized by ring‐opening polymerization (ROP) and DCC chemistry. The inclusion complexes of SPLLA‐b‐PEO copolymers and α‐cyclodextrin (α‐CD) were prepared with two different methods. FTIR, 1H NMR, WAXD, DSC, and TGA indicate that α‐CD only can be threaded onto PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐a, α‐CD‐SPLLA‐b‐PEO2K‐a, and α‐CD‐SPLLA‐b‐PEO5K‐a formed without heating and ultrasonication, and can be threaded onto both PLLA and PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐b, α‐CD‐SPLLA‐b‐PEO2K‐b, and α‐CD‐SPLLA‐b‐PEO5K‐b formed with heating and ultrasonication. Namely, α‐CDs can be threaded onto PEO blocks and the flanking bulky PLLA blocks of star‐block copolymers to form stable polyseudorotaxanes with heating method and ultrasonication to conquer the activation energy barrier of the inclusion complexation between bulky PLLA and α‐CD and the effect of the steric hindrance of star‐block copolymers. With the alteration of preparing methods, the inclusion complexes of α‐CD with the outer PEO block or PEO and PLLA blocks were obtained successfully. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2754–2762, 2009  相似文献   

13.
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010  相似文献   

14.
Reported here is self‐assembly behavior in selective solvent of diblock copolymers with relatively long corona‐forming block compared to core‐forming block. Three diblock copolymers, poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester), also denoted as MPEG‐b‐PMALM copolymer, were prepared by fixing MPEG block with an average number of repeating units of 115, whereas varying PMALM block with an average number of repeating unit of 44, 23, 9, respectively. Multiple morphologies, such as sphere, cylinder, vesicle, and their coexisted structures from self‐assembly of these diblock copolymers in aqueous media by changing block nonselective solvent and initial polymer concentration used in preparation, were demonstrated directly via TEM observation. These results herein might, therefore, demonstrate as an example that a wide range of morphologies can be accessed not only from “crew‐cut micelles” but also from “star‐micelles” by controlling over preparation strategies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 364–371, 2010  相似文献   

15.
Double hydrophilic poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PEO‐b‐PNIPAM) block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization, using a PEO‐based chain transfer agent (PEO‐CTA). The molecular structures of the copolymers were designed to be asymmetric with a short PEO block and long PNIPAM blocks. Temperature‐induced aggregation behavior of the block copolymers in dilute aqueous solutions was systematically investigated by a combination of static and dynamic light scattering. The effects of copolymer composition, concentration (Cp), and heating rate on the size, aggregation number, and morphology of the aggregates formed at temperatures above the LCST were studied. In slow heating processes, the aggregates formed by the copolymer having the longest PNIPAM block, were found to have the same morphology (spherical “crew‐cut” micelles) within the full range of Cp. Nevertheless, for the copolymer having the shortest PNIPAM block, the morphology of the aggregates showed a great dependence on Cp. Elongation of the aggregates from spherical to ellipsoidal or even cylindrical was observed. Moreover, vesicles were observed at the highest Cp investigated. Fast heating leads to different characteristics of the aggregates, including lower sizes and aggregation numbers, higher densities, and different morphologies. Thermodynamic and kinetic mechanisms were proposed to interpret these observations, including the competition between PNIPAM intrachain collapse and interchain aggregation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4099–4110, 2009  相似文献   

16.
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
With the aim of accessing colloidally stable, fiberlike, π‐conjugated nanostructures of controlled length, we have studied the solution self‐assembly of two asymmetric crystalline–coil, regioregular poly(3‐hexylthiophene)‐b‐poly(2‐vinylpyridine) (P3HT‐b‐P2VP) diblock copolymers, P3HT23b‐P2VP115 (block ratio=1:5) and P3HT44b‐P2VP115 (block ratio=ca. 1:3). The self‐assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu‐catalyzed azide–alkyne cycloaddition reactions of azide‐terminated P2VP and alkyne end‐functionalized P3HT homopolymers. When the block copolymers were self‐assembled in a solution of a 50 % (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP‐selective alcoholic solvent (MeOH<iPrOH<nBuOH). Very long (>3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain‐extended P3HT blocks. The crystallinity and π‐conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide‐angle X‐ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23b‐P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23b‐P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (Lw/Ln <1.11) and lengths from about 100‐300 nm, that were dependent on the unimer‐to‐seed micelle ratio.  相似文献   

18.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

19.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号