首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis and investigation of a new type of photoresponsive block copolymers (BCPs). They were designed to comprise two water‐soluble polymers containing two different photoisomerizable moieties (either azobenzene and spiropyran or two different azobenzenes), with the two constituting blocks that, when separated, exhibit a lower critical solution temperature (LCST) in water and can shift their LCST in opposite directions upon photoisomerization (decrease of LCST for one polymer and increase for the other). A variety of such doubly photoresponsive BCPs were synthesized using either azobenzene‐ or spiropyran‐containing poly(N,N‐dimethylacrylamide) (PDMA), poly(N‐isopropylacrylamide) (PNIPAM) and poly[methoxydi(ethylene glycol) methacrylate] (PDEGMMA). Their thermal phase transition behaviors in aqueous solution before and after simultaneous photoreactions on the two blocks were investigated in comparison with their constituting blocks, by means of solution transmittance (turbidity) and variable‐temperature 1H NMR measurements. The results show that BCPs displayed a single LCST whose shift upon two photoisomerizations appeared to be determined by the competing and opposing photoinduced effects on the two blocks. Moreover, optically controlling the relative photoisomerization degrees of trans azobenzene‐to‐cis azobenzene and spiropyran‐to‐merocyanine could be used to tune the LCST of BCP solution. This study demonstrates the potential of exploring a more complex photoreaction scheme to optically control the solution properties of water‐soluble thermosensitive BCPs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4055–4066, 2010  相似文献   

2.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

3.
Nitroxide‐mediated radical polymerization has been used for the preparation of pentafluorostyrene (PFS) homopolymers and random copolymers of PFS and oligo(ethyleneglycol) methacrylate (OEGMA8.5). The poly(pentafluorostyrene) homopolymers were reacted with thiophenol at different ratios at room temperature in the presence of triethylamine. The “clicked” polymers were characterized by 1H and 19F NMR spectroscopy and size exclusion chromatography. Moreover, the copolymerization kinetics of the PFS and OEGMA8.5 copolymers was followed, and the phase transition behavior of random copolymers with different compositions was discussed. Furthermore, copolymers of PFS and 2‐(dimethylamino) ethyl methacrylate (DMAEMA) were prepared at various mole ratios, and the copolymer with a 10:90 ratio, respectively, was soluble in water at room temperature. Turbidimetry measurements were performed for PFS and OEGMA8.5 or DMAEMA copolymers to determine their cloud points. Finally, the PFS and OEGMA8.5 copolymer with a mole ratio of 60:40 was reacted further with thiophenol to increase the hydrophobic part in the copolymer. The cloud points of the obtained copolymers could be tuned from 87 to 33 °C by using not only the controlled radical polymerization but also the “click” reaction in a controlled fashion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1278–1286, 2010  相似文献   

4.
A series of poly(2‐(dimethylamino)ethyl methacrylate‐ran‐9‐(4‐vinylbenzyl)‐9H‐carbazole) (poly(DMAEMA‐ran‐VBK)) random copolymers, with VBK molar feed compositions fVBK,0 = 0.02–0.09, were synthesized using 10 mol % [tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] nitroxide (SG1) relative to 2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropionic acid (BlocBuilder) at 80 °C and 90 °C. Controlled polymerizations were observed, even with fVBK,0 = 0.02, as reflected by a linear increase in number average molecular weight (Mn) versus conversion X ≤ 0.6 with final copolymers characterized by relatively narrow, monomodal molecular weight distributions (Mw/Mn ≈ 1.5). Poly(DMAEMA‐ran‐VBK) copolymers were deemed sufficiently pseudo‐“living” to reinitiate a second batch of N,N‐dimethylacrylamide (DMAA), with very few apparent dead chains, as indicated by the monomodal shift in the gel permeation chromatography chromatograms. Poly(DMAEMA‐ran‐VBK) random copolymers exhibited tuneable lower critical solution temperature (LCST), in aqueous solution, by modifying copolymer composition, solution pH and by the addition of the water‐soluble poly(DMAA) segment. 1H NMR analysis determined that, in water, the VBK units of the poly(DMAEMA‐ran‐VBK) random copolymer were segregated to the interior of the copolymer aggregate regardless of solution temperature and that poly(DMAEMA‐ran‐VBK)‐b‐poly(DMAA) block copolymers formed micelles above the LCST. In addition, the final random copolymer and block copolymer exhibited temperature dependent fluorescence due to the VBK units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

6.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

7.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

8.
The goal of this study was to develop a new route to prepare thermally responsive polymer nanogels. Poly(N‐vinylcaprolactam) nanogels were prepared via inverse miniemulsion polymerization (W/O) at 70 °C using n‐hexadecane as a nonpolar continuous phase, potassium persulfate as an initiator, and N,N′‐methylenebisacrylamide as a crosslinker. Sorbitan monooleate (Span 80) was used as surfactant and its influence on the polymerization kinetics and on the colloidal characteristics of the nanogels were principally investigated. It was observed that the addition of a strong “lipophobe” is required to stabilize the resulting miniemulsion. The nanogels were characterized in terms of morphology, size, zeta potential, and thermoproperties using transmission electron microscopy and dynamic light scattering. It was observed that all the nanogels obtained collapsed when the lower critical solution temperature (LCST) was raised. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3932–3941, 2010  相似文献   

9.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A series of poly(N‐isopropylacrylamide‐coN‐hydroxymethylacrylamide) P(NIPAM‐co‐NHMA) copolymers were firstly synthesized via free radical polymerization. Then, the hydrophobic, photosensitive 2‐diazo‐1,2‐naphthoquinone (DNQ) molecules were partially and randomly grafted onto P(NIPAM‐co‐NHMA) backbone through esterification to obtain a triple‐stimuli (photo/pH/thermo) responsive copolymers of P(NIPAM‐co‐NHMA‐co‐DNQMA). UV‐vis spectra showed that the lower critical solution temperature (LCST) of P(NIPAM‐co‐NHMA) ascended with increasing hydrophilic comonomer NHMA molar fraction and can be tailored by pH variation as well. The LCST of the P(NIPAM‐co‐NHMA) went down firstly after DNQ modification and subsequently shifted to higher value after UV irradiation. Meanwhile, the phase transition profile of P(NIPAM‐co‐NHMA‐co‐DNQMA) could be triggered by pH and UV light as expected. Thus, a triple‐stimuli responsive copolymer whose solution properties could be, respectively, modulated by temperature, light, and pH, has been achieved. These stimuli‐responsive properties should be very important for controlled release delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2763–2773, 2009  相似文献   

11.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

12.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

13.
Peptide–polymer conjugate consisting of a sequence‐defined tripeptide and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) is synthesized by a simple “grafting from” atom transfer radical polymerization (ATRP) approach. The ATRP of PDMAEMA using peptide‐macroinitiator and CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine system in anisole follows pseudo first order kinetics up to a conversion of about 25% within a time span of 125 min. The attachment of peptide moiety at the end of PDMAEMA chain is confirmed from MALDI‐TOF‐MS and circular dichroism analyses. The self‐assembly of as‐synthesized peptide‐PDMAEMA conjugate in organic solvents leads to the formation of spherical nanoparticles as observed through FESEM. Peptide‐PDMAEMA conjugate become soluble in water due to the protonation of the pendent —N(CH3)2 moiety of DMAEMA group of the conjugate. Owing to the amphiphilic nature of the protonated conjugate (peptide‐PDMAEMAH), it also undergoes self‐aggregation in water into nanostructures of various morphologies such as dendrite, small sphere and large sphere at pHs of 2, 8, and 10, respectively. Peptide‐PDMAEMA‐IBu conjugate obtained by the post‐modification of —N(CH3)2 moiety of DMAEMA group of the conjugate with n‐butylbromide also undergoes self‐aggregation into dendritic nanostructures in water. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3286–3297  相似文献   

14.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009  相似文献   

15.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

16.
Statistical copolymerizations of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) with 2‐vinylpyridine (2VP) with 80 to 99 mol % DMAEMA in the feed utilizing a succinimidyl ester‐terminated alkoxyamine unimolecular initiator (NHS‐BlocBuilder) at 80 °C in bulk were performed. The effectiveness of 2VP as a controlling comonomer is demonstrated by linear increases in number‐average molecular weight versus conversion, relatively low PDI (1.5–1.6 with up to 98% DMAEMA) and successful chain extensions with 2VP. Additional free nitroxide does not significantly improve control for the DMAEMA/2VP copolymerizations. The succinimidyl ester on the initiator permits coupling to amine‐terminated poly(propylene glycol) (PPG), yielding an effective macroinitiator for synthesizing a doubly thermo‐responsive block copolymer of PPG‐block‐P(DMAEMA/2VP). A detailed study of the thermo‐ and pH‐sensitivities of the statistical and block copolymers is also presented. The cloud point temperature of the statistical copolymers is fine tuned from 14 to 75 °C by varying polymer composition and pH. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

17.
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201  相似文献   

18.
Homopolymerization and diblock copolymerization of 2‐hydroxypropyl acrylate (HPA) has been conducted using reversible addition fragmentation chain transfer (RAFT) chemistry in tert‐butanol at 80 °C. PHPA homopolymers were obtained with high conversions and narrow molecular weight distributions over a wide range of target degrees of polymerization. Like its poly(2‐hydroxyethyl methacrylate) isomer, PHPA homopolymer exhibits inverse temperature solubility in dilute aqueous solution, with cloud points increasing systematically on lowering the mean chain length. The nature of the end groups is shown to significantly affect the cloud point, whereas no effect of concentration was observed over the PHPA concentration range investigated. Various thermoresponsive PHPA‐based diblock copolymers were prepared via one‐pot syntheses in which the second block was either permanently hydrophilic or pH‐responsive. Preliminary studies confirmed that poly(ethylene oxide)‐poly(2‐hydroxypropyl acrylate) (PEO45‐PHPA48) and poly(2‐hydroxypropyl acrylate)‐ poly(2‐hydroxyethyl acrylate) (PHPA49‐PHEA68)diblock copolymers formed well‐defined PHPA‐core micelles in 10 mM sodium nitrate solution at 40 °C and 70 °C with mean hydrodynamic diameters of 20 nm and 35 nm, respectively. In contrast, most other PHPA‐based diblock copolymers investigated formed larger colloidal aggregates in 10 mM NaNO3 solution at elevated temperatures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2032–2043, 2010  相似文献   

19.
In this thesis, we studied the convenient synthesis and characterizations of thermo‐responsive materials with double response. To achieve these, AB‐type diblock copolymers comprising of poly(N‐isopropylacrylamide) (NIPAAm) segment and poly(NIPAAm‐co‐(N‐(hydroxymethyl)acrylamide) (HMAAm)) one were designed. That was synthesized in one‐pot using an atom transfer radical polymerization (ATRP) technique. Poly(NIPAAm‐co‐HMAAm)s synthesized separately showed sensitive thermo‐response and the cloud point was completely tunable by the composition of HMAAm. As expected, the block copolymers exhibited double thermo‐responsive profiles in aqueous solution. The responsive behavior was discussed by precise trace by 1H NMR and turbidity measurements. From these results, we could confirm almost independent dehydration of each segment. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6142–6150, 2008  相似文献   

20.
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号