首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
An efficient algorithm is proposed to solve the steady-state nonlinear heat conduction equation using the boundary element method (BEM). Nonlinearity of the heat conduction equation arises from nonlinear boundary conditions and temperature dependence of thermal conductivity. Using Kirchhoff's transformation, the case of temperature dependence of thermal conductivity can be transformed to the nonlinear boundary conditions case. Applying the BEM technique, the resulting matrix equation becomes nonlinear. The nonlinearity, however, only involves the boundary nodes that have nonlinearboundary conditions. The proposed local iterative scheme reduces the entire BEM matrix equation to a smaller matrix equation whose rank is the same as the number of boundary nodes with nonlinear boundary conditions. The Newton-Raphson iteration scheme is used to solve the reduced nonlinear matrix equation. The local iterative scheme is first applied to two one-dimensional problems (analytical solutions are possible) with different nonlinear boundary conditions. It is then applied to a two-region problem. Finally, the local iterative scheme is applied to two cavity problems in which radiation plays a role in the heat transfer.  相似文献   

2.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this article; one is He's variational iteration method (VIM) and the other is the homotopy-perturbation method (HPM). The VIM is to construct correction functionals using general Lagrange multipliers identified optimally via the variational theory, and the initial approximations can be freely chosen with unknown constants. The HPM deforms a difficult problem into a simple problem which can be easily solved. Nonlinear convective–radiative cooling equation, nonlinear heat equation (porous media equation) and nonlinear heat equation with cubic nonlinearity are used as examples to illustrate the simple solution procedures. Comparison of the applied methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

3.
Most engineering problems, especially heat transfer equations, are mostly nonlinear. Homotopy analysis method (HAM) has been applied to solve many differential equations. In this paper, we use HAM to detect the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. The results of the homotopy analysis method are compared with those of the exact solution and Adomian’s decomposition method (ADM) solved by Cihat Arslanturk.  相似文献   

4.
In this work, forced convective heat transfer of nanofluid in the developing laminar flow (entrance region) in a circular tube is considered. The nanofluid thermal conductivity, as an important parameter, is considered as two parts: static and dynamic part. Simulated results show that the dynamic part of nanofluid thermal conductivity due to the Brownian motion has a minor effect on the heat transfer coefficients, on the other hand, static part of thermal conductivity including nanolayer around nanoparticle has an important role in heat transfer.  相似文献   

5.
The linear transformation group approach is developed to simulate heat diffusion problems in a media with the thermal conductivity and the heat capacity are nonlinear and obeyed a striking power law relation, subject to nonlinear boundary conditions due to radiation exchange at the interface according to the fourth power law. The application of a one-parameter transformation group reduces the number of independent variables by one so that the governing partial differential equation with the boundary conditions reduces to an ordinary differential equation with appropriate corresponding conditions. The Runge–Kutta shooting method is used to solve the nonlinear ordinary differential equation. Different parametric studies are worked out and plotted to study the effect of heat transfer coefficient, density and radiation number on the surface temperature.  相似文献   

6.
In this article, the approximate solution of nonlinear heat diffusion and heat transfer equation are developed via homotopy analysis method (HAM). This method is a strong and easy‐to‐use analytic tool for investigating nonlinear problems, which does not need small parameters. HAM contains the auxiliary parameter ?, which provides us with a simple way to adjust and control the convergence region of solution series. By suitable choice of the auxiliary parameter ?, we can obtain reasonable solutions for large modulus. In this study, we compare HAM results, with those of homotopy perturbation method and the exact solutions. The first differential equation to be solved is a straight fin with a temperature‐dependent thermal conductivity and the second one is the two‐ and three‐dimensional unsteady diffusion problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

7.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

8.
This study investigated the effects of two oscillating fins on the heat transfer rate and flow characteristics of a nanofluid inside a square enclosure. Both fins were attached to the hot wall and both fins oscillated at the same frequencies and amplitudes. The finite element method implemented in the arbitrary Lagrangian–Eulerian (ALE) technique was used to solve the equations describing the interactions and movements of the nanofluid and fins. Comparisons of our results and those reported in previous studies demonstrated that the modeling and numerical investigations were valid and reliable. The results showed that the increase in the heat transfer rate was due to the oscillation of the fins. In addition, the increasing trend in the heat transfer rate due to the oscillating fins decreased as the ratio of the thermal conductivity of the fins relative to the nanofluid increased. Increasing the thermal conductivity and viscosity parameters enhanced and weakened the heat transfer rate, respectively.  相似文献   

9.
基于Brinkman Darcy扩展模型和非局部热平衡模型,考虑液相和固相含有内热源的情况,建立了多孔介质平板通道传热的一般模型.分别采用直接法和间接法将液相与固相能量方程解耦,进而求得充分发展传热条件下的多孔介质温度场.与直接解耦法相比,间接解耦法可在原始边界条件下求解二阶微分方程,更加简单易行.通过对无量纲温度表达式系数以及温度分布的比较,验证了两种求解方法的等价性.在两种极限情形下,间接法所得温度分布解析解与现有文献结果相当吻合,这也在一定程度上证明了所建模型更具一般性.参数分析表明,液固两相温差随着Biot数或有效导热系数比的增大而减小,Nusselt数随着内热源比的增大而减小.  相似文献   

10.
A dynamic adaptation method is applied to gas dynamics problems with nonlinear heat conduction. The adaptation function is determined by the condition that the energy equation is quasi-stationary and the grid point distribution is quasi-uniform. The dynamic adaptation method with the adaptation function thus determined and a front-tracking technique are used to solve the model problem of a piston moving in a heat-conducting gas. It is shown that the results significantly depend on the thermal conductivity chosen. The numerical results obtained on a 40-node grid are compared with self-similar solutions to this problem.  相似文献   

11.
The present paper is focussed on the investigation of the potential adoption of the Monte Carlo method to solve one-dimensional, steady state, thermal diffusion problems for continuous solids characterised by an isotropic, space-dependent conductivity tensor and subjected to non-uniform heat power deposition.  相似文献   

12.
研究了平面分层气-液射流在非线性温度分布条件下的界面不稳定性性质.考虑了气体的可压缩性、液体的粘性、以及气体热导率和密度随温度变化等事实.并应用正则模态方法将问题转化为四阶变系数常微分方程,用数值积分和多重打靶法对模型的空间模式进行了计算,研究了不稳定模态随各物理参量的变化趋势.计算表明模型所体现的不稳定性特征与其它模型的计算结果是一致的.同时计算还得出气体和液体的温差越小、雷诺数越大、热导率变大均将有利于液体射流有效雾化的结果.该结论与HJE.Co.Inc(Glens Falls,NY,USA)的实验数据是定性吻合的.  相似文献   

13.
为获得优异的散热结构设计,发展了一种基于腐蚀-扩散算子的变密度胞元层级结构设计方法.通过腐蚀-扩散算子得到了一系列拓扑相似但体积分数不同的变密度微结构,计算并拟合得到变密度微结构等效热传导系数曲线.在此基础上,采用移动渐近线法更新宏观设计变量,将变密度微结构植入相应体积分数的宏观单元中完成装配.通过数值算例对不同优化方法下温度场的热柔顺度、平均温度、方差等参数进行了比较分析,结果表明,变密度胞元层级结构比传统单尺度胞元结构和周期胞元结构具有更好的散热性能.  相似文献   

14.
非线性二维导热反问题的混沌-正则化混合解法   总被引:5,自引:0,他引:5  
考虑热传导系数随温度变化,建立了非线性二维稳态导热反问题数值计算模型。并把混沌优化方法和梯度正则化方法相结合,构成一种混沌-正则化混合算法求该计算模型的全局解。以热传导系数随温度线性变化为例,由布置在结构边界上的观测点温度信息确定了结构材料热传导系数及其随温度变化规律。结果表明混合算法计算结果与初值无关,具有很好的全局寻优性能,而且计算量远比经典遗传算法和单纯采用混沌优化方法小。  相似文献   

15.
In this work a semi-discretization method is presented for the inverse determination of spatially- and temperature-dependent thermal conductivity in a one-dimensional heat conduction domain without internal temperature measurements. The temperature distribution is approximated as a polynomial function of position using boundary data. The derivatives of temperature in the differential heat conduction equation are taken derivative of the approximated temperature function, and the derivative of thermal conductivity is obtained by finite difference technique. The heat conduction equation is then converted into a system of discretized linear equations. The unknown thermal conductivity is estimated by directly solving the linear equations. The numerical procedures do not require prior information of functional form of thermal conductivity. The close agreement between estimated results and exact solutions of the illustrated examples shows the applicability of the proposed method in estimating spatially- and temperature-dependent thermal conductivity in inverse heat conduction problem.  相似文献   

16.
给出了一种流(体)-热-结构综合的分析方法,固体中的热传导耦合了粘性流体中的热对流,因而在固体中产生热应力.应用四段式有限元法和流线逆风Petrov-Galerkin法分析热粘性流动,应用Galerkin法分析固体中的热传导和热应力.应用二阶半隐式Crank-Nicolson格式对时间积分,提高了非线性方程线性化后的计算效率.为了简化所有有限元公式,采用3节点的三角形单元,对所有的变量:流体的速度分量、压力、温度和固体的位移,使用同阶次的插值函数.这样做的主要优点是,使流体-固体介面处的热传导连接成一体.数个测试问题的结果表明,这种有限元法是有效的,且能加深对流(体)-热-结构相互作用现象的理解.  相似文献   

17.
在本文里,曾先后假设物体的导热系数是依直线和指数函数空间地起改变,就这样来建立了六个二阶热传导微分方程;又对于变密度、变比热、变导热系数这样的更一般的情况也推立了六个二阶热传导的微分方程.  相似文献   

18.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper a three-dimensional steady state model has been developed to study heat flow in dermal regions of tapered shape human limbs, which are elliptical in shape. The model incorporates the important biophysical parameters like blood mass flow rate, thermal conductivity and rate of metabolic heat generation. Appropriate boundary conditions have been framed using biophysical conditions. The finite element method has been employed using coaxial elliptical hexahedral elements to solve the problem. MATLAB 7.0 has been used to simulate the model and obtain numerical results.  相似文献   

20.
In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号