首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Ga2Br2R2 and Ga3I2R3 [R = C(SiMe3)3] — Two New Organoelement Subhalides of Gallium Containing One or Two Ga‐Ga Single Bonds The oxidation of the tetrahedral tetragallium cluster Ga4[C(SiMe3)3]4 ( 1 ) with elemental bromine in the presence of AlBr3 yielded the corresponding gallium subhalide Ga2Br2R2 [ 4 , R = C(SiMe3)3], which remains monomer even in the solid state and in which the GaII atoms are connected by a short Ga‐Ga single bond [243.2(2) pm]. The analogous diiodide Ga2I2R2 ( 3 ), which was obtained on a similar route by our group only recently, did not react with lithium tert‐butanolate by substitution as originally expected. Instead, partial disproportionation occurred with the formation of the trigallium diiodide Ga3I2R3 ( 6 ), in which three Ga atoms are connected by two Ga‐Ga single bonds (255.1 pm on average). Both terminal Ga atoms have a coordination number of four owing to the bridging function of both iodine atoms, while the inner one which has an oxidation number of +1 remains coordinatively unsaturated. An average oxidation state of 1.66 resulted for all atoms of the chain. The GaIII compound {[GaI(R)(OCMe3)(OH)]Li}2 ( 7 ) was isolated as the second product of the disproportionation. It is a dimer in the solid state via Li‐O bridges and shows a hindered rotation of its tert‐butyl group.  相似文献   

2.
Reactions of the Dielement Compounds R2E–ER2 [E = Ga, In; R = CH(SiMe3)2] with Lithium Phenylethynide – Formation of Adducts by Retention of the E–E Bonds Lithium phenylethynide reacted with the dielement compounds tetrakis[bis(trimethylsilyl)methyl]digallane(4) ( 2 ) and diindane(4) ( 3 ) as a Lewis‐base and gave by the addition of one ethynido ligand to one of the Lewis‐acidic central atoms the anionic adducts 4 and 5 with intact Ga–Ga and In–In single bonds. Thus, compounds were formed, in which tricoordinated, coordinatively unsaturated Ga or In atoms are neighbored to tetracoordinated, coordinatively saturated ones. The E–E bonds [255.83 pm in 4 (Ga–Ga) and 285.24 pm in 5 (In–In)] are only slightly lengthened compared to those of the starting compounds 2 and 3 . A dynamic behavior with a fast change of the position of the ethynido ligand was observed for both compounds in solution at room temperature.  相似文献   

3.
The Insertion of Oxygen Atoms into Ga–Ga and In–In Bonds – Formation of the Monomeric Compounds R2E–O–ER2 [R = CH(SiMe3)2] with Strongly Enlarged Angles E–O–E The tetraalkyldielement compounds R2Ga–GaR2 ( 1 ) und R2In–InR2 ( 2 ) [R = CH(SiMe3)2] reacted with trimethylamine N-oxide by the insertion of oxygen atoms in their element-element single bonds. The products R2E–O–ER2 are monomeric in the solid state due to the high steric shielding by the voluminous bis(trimethylsilyl)methyl groups. As shown by crystal structure determinations, the E–O–E bridges have large angles of 142.7 (E = Ga, 3 ) and 138.6° (E = In, 4 ) and short separations between the oxygen and the coordinatively unsaturated Ga and In atoms. Both products are extremely hygroscopic.  相似文献   

4.
The Reaction of the Digallium Subiodide R(I)Ga‐Ga(I)R [R = C(SiMe3)3] with Lithium Diphenylphosphanide – Radical Cleavage of the Ga‐Ga Bond The easily available organoelement digallium(II) subiodide R(I)Ga‐Ga(I)R ( 1 ) [R = C(SiMe3)3] reacted with two equivalents of lithium diphenylphosphanide in toluene by the replacement of both iodine atoms by two phosphanido groups. The product, [R(H)Ga‐P(C6H5)2]2 ( 2 ), contains a four‐membered Ga2P2 heterocycle without direct Ga‐Ga bonding interactions and the gallium atoms exclusively in an oxidation state of +III. They are attached to hydrogen atoms, which may result from a reaction of a reactive intermediate with the solvent.  相似文献   

5.
Investigations on the Insertion of Carbenes into Al–Al, Ga–Ga, and In–In Bonds Tetrakis[bis(trimethylsilyl)methyl]dialane(4) 1 reacts with methylthiomethyl lithium LiCH2SMe by the formation of lithium thiomethanolate LiSMe and the insertion of the remaining carbene CH2 into its Al–Al single bond. A chelating Lewis acid is formed exhibiting a central R2Al–CH2–AlR2 group with two coordinatively unsaturated Al atoms, which coordinate the thiomethanolate anion by Al–S bonds. The product (μ-methylene)(μ-thiomethanolato)bis{bis[bis(trimethylsilyl)methyl]aluminate} ( 4 ) was characterized by a crystal structure determination and has a strongly folded Al2CS heterocycle in the molecular core. In contrast, the corresponding compounds with Ga–Ga or In–In bonds show on treatment with methylthiomethyl lithium a fragmentation, and the carbene intermediate could not be detected in both isolated products, which were identified as [R2E(CH2SMe)2][Li(TMEDA)] (E = Ga: 5 ; E = In: 6 ) and LiCH(SiMe3)2 probably formed by a metal exchange reaction.  相似文献   

6.
Terminal and Bridging Coordination of Indium‐Indium Bonds – Remarkable Polymorphism with the Compound In2R2[(OCC6H5)2CH]2 [R = C(SiMe3)3] Treatment of the dimeric indium(II) subhalide (In2R2Cl2)2 ( 1 ) [R = C(SiMe3)3] with four equivalents of lithium dipivaloylmethanide or lithium dibenzoylmethanide afforded by the release of lithium chloride the corresponding diindium diacetylacetonates ( 2 and 3 ). The In‐In single bonds of the products were terminally coordinated by chelating acectylacetonato ligands and the bulky alkyl groups. Three different crystal structures were determined for the dibenzoylmethanide derivative 3 which in the solid state adopted trans and gauche conformations across the In‐In bonds. In contrast to the terminally arranged acetylacetonato ligands of compounds 2 and 3 alkylbenzoato ligands R‐COO? (3,5‐dimethylbenzoate and ptert‐butylbenzoate) gave the bridging coordination of the In‐In bonds by two chelating carboxylato groups ( 4 and 5 ). This particular coordination caused a strong shortening of the In‐In bond length in 4 compared to the unsupported bonds in 2 and 3 (264.6 versus 274.7 to 279.3 pm).  相似文献   

7.
The synthesis, structure, and properties of bischloro, μ‐oxo, and a family of μ‐hydroxo complexes (with BF4?, SbF6?, and PF6? counteranions) of diethylpyrrole‐bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ‐oxo complexes are in the high‐spin state (S=5/2). However, the two iron centers in the diiron(III) μ‐hydroxo complexes are equivalent with high spin (S=5/2) in the solid state and an intermediate‐spin state (S=3/2) in solution. The molecules have been compared with previously known diiron(III) μ‐hydroxo complexes of ethane‐bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X‐ray structural parameters between diethylpyrrole and ethane‐bridged μ‐hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane‐bridged μ‐hydroxo complex, both iron centers become equivalent in the diethylpyrrole‐bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole‐bridged diiron(III) μ‐oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=?137.7 cm?1), although the coupling constant is reduced to only a weak value in the μ‐hydroxo complexes (J=?42.2, ?44.1, and ?42.4 cm?1 for the BF4, SbF6, and PF6 complexes, respectively).  相似文献   

8.
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid.  相似文献   

9.
Treatment of the dimeric gallium hydrazide [Me2Ga‐N(2‐Ad)‐NC5H10]2 ( 5 ) with Me2GaH resulted in the formation of an adduct 6 by Ga–N bond cleavage and coordination of the metal hydride via a Ga–N and a 3c–2e Ga–H–Ga bond. This reaction reflects the typical behavior of frustrated Lewis pairs. Reactions with heterocumulenes R–N=C=X (R = Ph, CMe3, Dipp, X = O; R = Ph, X = S) or X=C=X (X = O, S) resulted in the formation of the cyclic Ga–N insertion products Me2Ga–N(R)C(O)N(2‐Ad)‐NC5H10 ( 7a – c ), Me2GaS2C‐N(2‐Ad)‐NC5H10 ( 8 ) or Me2GaX2C‐N(2‐Ad)‐NC5H10 [X = O ( 9 ); S ( 10 )] in moderate to good yields. Three different structural motifs were observed in the solid state: Five‐membered GaNCN2 heterocycles with exocyclic C=O bonds for compounds 7a – c , four‐membered GaSCN or GaSCS heterocycles for compounds 8 and 9 (chelating coordination of the Ga atoms by SCN and CS2 ligands) and an eight‐membered (GaOCO)2 heterocycle for the dimeric CO2 insertion product 10 . Treatment of 5 with PhCN or Ph2CO resulted in a completely different reaction and afforded a dimeric Ga imide 11a or an alcoholate 11b . These reactions may start by retro‐hydrogallation with the formation of H10C5N–N=C(C9H14) and Me2GaH and proceed by addition of the metal hydride to the polar multiple bonds of the nitrile or ketone.  相似文献   

10.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

11.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry.  相似文献   

12.
The title compound, [Mn7(C2H2N3)8(C2H3O2)4(OH)2]n, is composed of centrosymmetric heptanuclear building units with the central Mn atom on an inversion center. In the building block, three MnII ions are held together by one μ3‐hydroxide group, two μ2‐triazolate (trz) ligands and two μ2‐acetate groups, forming an Mn3 cluster. Two Mn3 clusters are bridged by an Mn atom via two μ2‐trz ligands and two μ2‐O atoms from two acetate ions to construct a heptanuclear building block. The heptanuclear building units, lying parallel to each other along the b direction, form one‐dimensional ladder‐like chains and are further interlinked, resulting in a three‐dimensional framework through Mn—Ntrz bonds.  相似文献   

13.
Ca3Au6.61Ga4.39 was synthesized by reacting the elements in a glassy carbon crucible under argon in a water‐cooled sample chamber in a high‐frequency furnace. The compound crystallizes with a new hexagonal structure type, space group P63/mmc: Z = 2, a = 926.6(2), c = 733.1(2) pm, wR2 = 0.0832, 328 F values and 20 variables. This structure type consists of a remarkably complex three‐dimensional [Au6.61Ga4.39] network with significant Au–Au, Au–Ga, and Ga–Ga interactions. The calcium atoms are located within slightly distorted hexagonal channels of the gold–gallium network. The structural relations to the AlB2 and Er2RhSi3 type structures are discussed.  相似文献   

14.
In the title compound, [In(C8H4O4)(OH)(H2O)]n, the coordination of the InIII ion is composed of six O atoms from three dianionic benzene‐1,2‐dicarboxylate ligands, two hydroxyl groups and one coordinated water mol­ecule in a distorted octa­hedral geometry. The In3+ ions are linked by the hydroxyl groups to form zigzag In–OH–In chains, which are further bridged by the benzene‐1,2‐dicarboxylic acid ligands to generate a two‐dimensional layered structure featuring three types of rings (six‐, 14‐ and 20‐membered). Hydrogen bonds between the water mol­ecule and a carboxyl­ate O atom, and between the hydroxyl group and a carboxyl­ate O atom, are observed within the layers. In the crystal packing, there are π–­π stacking inter­actions between the benzene rings of adjacent layers, with a centroid‐to‐centroid distance of 3.668 (3) Å and a dihedral angle of 4.8 (2)°.  相似文献   

15.
Bridging Coordination of Gallium–Gallium Bonds by Chelating Ligands – Limitations of the Stability of Digallium Derivatives The reactions of bis[bis(trimethylsilyl)methyl]‐di(μ‐acetato)digallium(Ga–Ga) ( 2 ) with lithium‐2‐amido‐1‐methylbenzimidazole in the molar ratios of 1 to 1 or 1 to 2 yielded by the precipitation of lithium aceatate new digallium compounds, in which the intact Ga–Ga bonds were bridged by two chelating ligands. The replacement of only one acetato group gave compound 5 , that possesses two different bridging ligands with the benzimidazole group coordinated by its terminal amido function and that nitrogen atom of the heterocycle which is not attached to a methyl group. If both acetato groups were replaced by imdazole ligands, two products were obtained, in which the chelates are transferred in each other either by a mirror plane parallel to the Ga–Ga bond (cis, 6 ) or by a twofold rotational axis perpendicular to the element–element bond (trans, 7 ). 7 is thermodynamically favored and was irreversibly formed by heating of the mixture. 5 and 7 were characterized by crystal structure determinations and have Ga atoms in a chiral environment. Weaker donor ligands such as diphenyl(lithiomethyl)(piperidinomethyl)silane, which in principal is able to coordinate via its carbanionic carbon atom and more weakly via its sterically shielded piperidino nitrogen atom, led to the cleavage of the Ga–Ga bond. The mononuclear compound 8 was isolated, in which the Ga atom is attached to one bis(trimethylsilyl)methyl group and two (piperidinomethyl)silyl substituents. Furthermore, the synthesis of a dialkyl‐bis(1,3‐dionato)digallium derivative ( 9 ) is reported, in which the chelating 1,3‐dionato groups are terminally coordinated to the Ga atoms of the unsupported Ga–Ga bond.  相似文献   

16.
The orthorhombic crystal structure of [Co2(CO)6(μ‐CO)(μ‐C4O2H2)] ( 1 ) was determined at 150 K (Fig. 1). Two C−H⋅⋅⋅O bonds connect the molecules, forming waving ribbons along the b axis. The experimental electron density, determined with the aspherical‐atom formalism, was analyzed with the topological theory of molecular structure. The presence of the Co−Co bond critical point indicates for the first time the existence of a metal−metal bond in a system with bridged ligands. The bond critical properties of the intramolecular bonds and of the intermolecular interactions show features similar to those found in [Mn2(CO)10], confirming our previously established bonding classification for organometallic and coordination compounds.  相似文献   

17.
Donor‐stabilized Galliumdihalides Ga2X4·2D (X = Cl, Br; D = Donor): An Experimental Contribution on the Variation of the Gallium‐Gallium Single Bond During the disproportionation of metastable GaX‐solutions (X= Cl, Br) donor‐stabilized galliumdihalides are formed as oxidized products. According to X‐ray structure analyses they all exhibit dimeric entities DX2Ga‐GAX2D (D= THF, NHEt2, NEt3, 4‐tButylpyridin or Br), which means these compounds are isoelectronic with ethane and could schematically be regarded as representatives of catenulate or alkane‐like gallium subhalides: Gan(X, D)2n+2. The gallium‐gallium bond in these compounds is shorter than in the organometallic compounds such as R2Ga‐GaR2. The comparison of the bonding situation in the galliumdihalides, particularly of the gallium‐gallium bond, shows clearly the influence by donor molecules as well as by halogen ligands.  相似文献   

18.
Single crystals of Ta7Cu10Ga34 were grown from the elements in a Cu/Ga melt. Ta7Cu10Ga34 represents the first ternary compound of the system Ta/Cu/Ga. The crystal structure (Cmmm, oC102, Z = 2, a = 23.803(1), b = 12.2087(4), c = 5.7487(2) Å, 1291 refl. 78 parameters, R1 = 0.037, wR2 = 0.070). The crystal structure is characterized by rods of pentagonal prisms MGa10, which are alternatingly occupied by Ta and Cu. Four of these rods are connected to columns running in direction (001). These columns are linked by cubic units TaGa8, CuGa8, and GaGa8. According to the characteristic structural elements and the size of the unit cell Ta7Cu10Ga34 represents a 8 × 4 × 2 super structure of CsCl or bcc. With respect to the underlying CsCl structure the formula can be written as [Ta7Cu10Ga213]Ga32, i.e. a cubic primitive packing of 32 Ga atoms with Ta, Cu, and Ga in cubic voids and 13 vacancies. The pentagonal‐prismatic coordination of Ta and Cu can formally be obtained from the cubic primitive packing of Ga atoms by a 45° rotation of a part of the Ga8 cubes. There is a close similarity to the binary compounds Ta8Ga41 and Ta2–xGa5+x. The first one is also related to a CsCl‐like structure, the latter one contains rods of pentagonal prisms, which form the same columns. There are also relations to the ternaries V2Cu3Ga8 and V11Cu9Ga46, whose cubic structures are more or less complex variants of CsCl.  相似文献   

19.
The two isomorphous lanthanide coordination polymers, {[Ln2(C6H4NO2)2(C8H4O4)(OH)2(H2O)]·H2O}n (Ln = Er and Tm), contain two crystallographically independent Ln ions which are both eight‐coordinated by O atoms, but with quite different coordination environments. In both crystal structures, adjacent Ln atoms are bridged by μ3‐OH groups and carboxylate groups of isonicotinate and benzene‐1,2‐dicarboxylate ligands, forming infinite chains in which the Er...Er and Tm...Tm distances are in the ranges 3.622 (3)–3.894 (4) and 3.599 (7)–3.873 (1) Å, respectively. Adjacent chains are further connected through hydrogen bonds and π–π interactions into a three‐dimensional supramolecular framework.  相似文献   

20.
In the crystal structure of (R)‐N,N‐diisopropyl‐3‐(2‐hydroxy‐5‐methyl­phenyl)‐3‐phenyl­propyl­aminium (2R,3R)‐hydrogen tartrate, C22H32NO+·C4H5O6, the hydrogen tartrate anions are linked by O—H⋯O hydrogen bonds to form helical chains built from (9) rings. These chains are linked by the tolterodine molecules via N—H⋯O and O—H⋯O hydrogen bonds to form separate sheets parallel to the (101) plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号