首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

2.
Two ruthenium(II) complexes [Ru(MeIm)4(L)]2+ (L?=?2-(imidazo-4-group)-1H-imidazo-[4,5-f][1,10]phenanthroline, 2-(thiophene-2-group)-1H-imidazo[4,5-f][1,10]phenanthroline, MeIm?=?1-methylimidazole) have been synthesized according to literature and structurally characterized. The interaction of the complexes with calf thymus DNA has been explored using electronic absorption titration, competitive binding experiment, circular dichroism, thermal denaturation, and viscosity measurements. The results show that both complexes could bind DNA in a intercalation mode and the DNA-binding affinity of [Ru(MeIm)4(tip)]2+ (K b?=?(7.2?±?0.3)?×?105?(mol?L?1)?1) is greater than that of [Ru(MeIm)4(iip)]2+ (K b?=?(6.1?±?0.2)?×?105?(mol?L?1)?1).  相似文献   

3.
Positively charged α‐chymotrypsin (ChT) formed a 1:1 complex with negatively charged 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrinato iron(III) (FeTPPS) in phosphate buffer at pH 7.4 through electrostatic interaction. In spite of the large binding constant (K=4.8×105 M ?1), FeTPPS could not completely inhibit the catalysis of ChT in the hydrolysis of the model substrate, N‐succinyl‐L ‐phenylalanine p‐nitroanilide (SPNA). The degree of inhibition (60 %) was saturated at 1.6 equivalents of FeTPPS, which indicates that covering of the active site of ChT by FeTPPS was insufficient. The enzymatic activity lowered by FeTPPS was entirely recovered for the freshly prepared sample when the porphyrin on the protein surface was detached by per‐O‐methylated β‐cyclodextrin (TMe‐β‐CD), which formed a stable 1:2 inclusion complex with FeTPPS (K1=1.26×106 M ?1, K2=6.3×104 M ?1). FeTPPS gradually induced irreversible denaturation of ChT, and the denatured ChT further lost its catalytic ability. No repairing effect of TMe‐β‐CD was observed with irreversibly denatured ChT. A new reversible inhibitor, 5,10,15,20‐tetrakis[4‐(3,5‐dicarboxyphenylmethoxy)phenyl]porphyrinato iron(III) (FeP8M), was then designed, and its inhibitory behavior was examined. FeP8M formed very stable 1:1 and 1:2 FeP8M/ChT complexes with ChT, the K1 and K2 values being 2.0×108 and 1.0×106 M ?1, respectively. FeP8M effectively inhibited the ChT‐catalyzed hydrolysis of SPNA (maximum degree of inhibition=85 %), and the activity of ChT was recovered by per‐O‐methylated γ‐cyclodextrin. No irreversible denaturation of ChT occurred upon binding with FeP8M. The kinetic data support the observation that, for nonincubated samples, both inhibitors did not cause significant conformational change in ChT and inhibited the ChT activity by covering the active site of the enzyme.  相似文献   

4.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

5.
A novel linear poly(N‐isopropylacrylamide) (PNIPA) with β‐cylodextrin (β‐CD) moiety (PNIPA‐β‐CD) was synthesized by the conjugation of β‐CD carrying amino groups (EDA‐β‐CD) onto PNIPA with epoxy groups (P(NIPA‐co‐GMA), Mn = 3.86 × 104), and the related reaction conditions are investigated. PNIPA‐β‐CD was characterized by means of IR, NMR and UV spectroscopes, element analysis, and differential scanning calorimetry (DSC). The number‐average molecular weight (Mn) and the β‐CD content of the obtained PNIPA‐β‐CD are 4.87 × 104 and 18.8 wt %, respectively. PNIPA‐β‐CD can not only respond to temperature stimuli but also include guest molecules. Lower critical solution temperature (LCST) of aqueous PNIPA‐β‐CD solution is similar to that of PNIPA. The association constant (Ka) for PNIPA‐β‐CD with methyl orange (MO) is 2.4 × 103 L mol?1 at pH 1.4, which is comparable to that of EDA‐β‐CD (Ka = 2.9 × 103 L mol?1). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3516–3524, 2005  相似文献   

6.
The mediation of electron‐transfer by oxo‐bridged dinuclear ruthenium ammine [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ for the oxidation of glucose was investigated by cyclic voltammetry. These ruthenium (III) complexes exhibit appropriate redox potentials of 0.131–0.09 V vs. SCE to act as electron‐transfer mediators. The plot of anodic current vs. the glucose concentration was linear in the concentration range between 2.52×10?5 and 1.00×10?4 mol L?1. Moreover, the apparent Michaelis‐Menten kinetic (KMapp) and the catalytic (Kcat) constants were 8.757×10?6 mol L?1 and 1,956 s?1, respectively, demonstrating the efficiency of the ruthenium dinuclear oxo‐complex [(bpy)2(NH3)RuIII(µ‐O)RuIII(NH3)(bpy)2]4+ as mediator of redox electron‐transfer.  相似文献   

7.
A simple method to modify the primary face of cyclodextrins (CDs) is described. The 6IO‐yl radical of α‐, β‐, and γ‐CDs regioselectively abstracts the H5II, located in the adjacent D ‐glucose unit, by an intramolecular 1,8‐hydrogen‐atom‐transfer reaction through a geometrically restricted nine‐membered transition state to give a stable 1,3,5‐trioxocane ring. The reaction has been extended to the 1,4‐diols of α‐ and β‐CD to give the corresponding bis(trioxocane)s. The C2‐symmetric bis(trioxocane) corresponding to the α‐CD is a stable crystalline solid whose structure was confirmed by X‐ray diffraction analysis. The calculated geometric parameters confirm that the primary face is severely distorted toward a narrower elliptical shape for this rim.  相似文献   

8.
The synthesis and characterisation of a novel isomeric family of closo‐carborane‐containing PtII complexes ((R/S)‐( 1 – 4 )?2 NO3) are reported. Related complexes ( 5 ?NO3 and 6 ?NO3) that contain the 7,8‐nido‐carborane cluster were obtained from the selective deboronation of the 1,2‐closo‐carborane analogues. The corresponding water‐soluble supramolecular 1:1 host–guest β‐cyclodextrin (β‐CD) adducts ((R/S)‐( 1 – 4 ) ? β‐CD?2 NO3) were also prepared and fully characterised. HR‐ESI‐MS experiments confirmed the presence of the host–guest adducts, and 2D‐1H{11B} ROESY NMR studies showed that the boron clusters enter the β‐CD from the side of the wider annulus. Isothermal titration calorimetry (ITC) experiments revealed enthalpically driven 1:1 and higher‐order supramolecular interactions between β‐CD and (R/S)‐( 1 – 4 )?2 NO3 in aqueous solution. A comparison of the predominate 1:1 binding mode established that the affinity of β‐CD for the guest molecule is mainly influenced by the pyridyl ring substitution pattern and chirality of the host, whilst the nature of the closo‐carborane isomer also plays some role, with the most favourable structural features for β‐CD binding being the presence of the 4‐pyridyl ring, 1,12‐closo‐carborane, and an S configuration. The results reported here represent the first comprehensive calorimetric study of the supramolecular interactions between closo‐carborane compounds and β‐CD, and it provides fascinating insights into the structural features influencing the thermodynamics of this phenomenon.  相似文献   

9.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

10.
IntroductionEnzymeimmunoassaybasedonaselectiveantigen antibodybindingandalabelenzymehasgainedincreas ingimportanceinrecentyears .Amongtheenzymesused ,horseradishperoxidase (HRP)isthemostwidelyusedenzymelabelbecauseofitshighspecificityandsensitivi ty .1 3 Flu…  相似文献   

11.
Convenient regioselective syntheses of 3‐acetates of methyl pyranosides of α‐L‐rhamnose, α‐ and β‐L‐arabinose, α‐D‐fucose, α‐D‐lyxose, and β‐D‐ribose with good yields have been attained using MoCl5 as catalyst. Methyl β‐L‐rhamnopyranoside under this conditions gave 2‐acetate.  相似文献   

12.
Electrospray ionization triple quadrupole mass spectrometry (ESI‐TSQ‐MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICR‐MS) were used to investigate the interesting gas‐phase reactions of the cationic iron (Fe) complexes of 2‐pyrimidinyloxy‐N‐arylbenzylamines (1–6), which are generated by ESI when mixing their methanolic solutions. Further studies of these Fe complexes by collision‐induced dissociation (CID) show that Fe(III) complexes undergo an interesting gas‐phase single electron transfer (SET) reaction to give 1?+–6?+,with loss of neutral FeCl2, whereas Fe(II) can catalyze gas‐phase Smiles rearrangement reactions of compounds 1–6. By using different Fe(II)X2 salts (X = Cl or Br) with a set of reactants, the role of the counterion (X?) and the structure effect of the reactants on Fe(II)‐catalyzed gas‐phase Smiles rearrangement reactions are studied. Evidence obtained from by TSQ‐MS and FTICR‐MS experiments, hydrogen/deuterium (H/D) exchange experiments and theoretical computations supported some unique gas‐phase chemistries initiated by introduction of Fe(II) into 1. Importantly, by comparing the distinct gas‐phase reaction results of the cationic Fe(III) complexes with those of Fe(II) complexes, the charge state effects of iron on the gas‐phase chemistries of Fe complexes are revealed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
《Analytical letters》2012,45(12):1847-1855
Abstract

Enantioselective, potentiometric membrane electrodes (EPMEs) based on immobilization of β‐, γ‐cyclodextrin (CD) or 2‐hydroxy‐3‐trimethylammoniopropyl‐β‐cyclodextrin (as chloride salt) (β‐CD‐derivative) in carbon paste have been designed. The β‐CD and β‐CD‐derivative‐based electrodes were applied in the 10?8–10?6 and 10?7–10?5 mol/L concentration ranges for the determination of L‐2‐hydroxyglutaric acid (L‐2‐HGA), whereas γ‐CD‐based electrode was applied for the determination of D‐2‐hydroxyglutaric acid (D‐2‐HGA) in the concentration range 10?6–10?4 mol/L. The β‐CD‐based EPME showed the lowest detection limit (1×10?9 mol/L). The enantioselectivity and selectivity of the proposed electrodes for the assay of L‐2‐HGA and D‐2‐HGA, respectively, were determined over D‐2‐HGA/L‐2‐HGA, creatine, and creatinine. The proposed EPMEs can be applied for the enantioanalysis of 2‐hydroxyglutaric acid in urine samples.  相似文献   

14.
Hexacoordinated non‐heme iron complexes [FeII(L1)2](ClO4)2 ( 1 ) and [FeII(L2)2](PF6)2 ( 2 ) have been synthesized using ligands L1 = (E)‐2‐chloro‐6‐(2‐(pyridin‐2ylmethylene) hydrazinyl)pyridine and L2 = (E)‐2‐chloro‐6‐(2‐(1‐(pyridin‐2‐yl)ethylidene)hydrazinyl) pyridine]. These complexes are highly active non‐heme iron catalysts to catalyze the C (sp3)?H bonds of alkanes. These iron complexes have been characterized using ESI?MS analysis and molecular structures were determined by X‐ray crystallography. ESI ? MS analysis also helped to understand the generation of intermediate species like FeIII?OOH and FeIV=O. DFT and TD?DFT calculations revealed that the oxidation reactions were performed through high‐valent iron center and a probable reaction mechanism was proposed. These complexes were also utilized for the degradation of orange II and methylene blue dyes.  相似文献   

15.
Synthesis of α‐C‐ethylene phosphate and phosphonate as well as α‐C‐methylene phosphate analogues of N‐acetyl‐α‐d‐glucosamine 1‐phosphate is reported starting from the common perbenzylated 2‐acetamido‐2‐deoxy‐α‐C‐allyl glucoside. Anomerisation of the corresponding amino α‐C‐glucosyl aldehyde to the β‐aldehyde was observed. Thus, both amino α‐ and β‐C‐glucosyl methanol were obtained after reduction.  相似文献   

16.
The rate constants for the OH + α‐pinene and OH + β‐pinene reactions have been measured in 5 Torr of He using discharge‐flow systems coupled with resonance fluorescence and laser‐induced fluorescence detection of the OH radical. At room temperature, the measured effective bimolecular rate constant for the OH + α‐pinene reaction was (6.08 ± 0.24) × 10?11 cm3 molecule?1 s?1. These results are in excellent agreement with previous absolute measurements of this rate constant, but are approximately 13% greater than the value currently recommended for atmospheric modeling. The measured effective bimolecular rate constant for the OH + β‐pinene reaction at room temperature was (7.72 ± 0.44) × 10?11 cm3 molecule?1 s?1, in excellent agreement with previous measurements and current recommendations. Above 300 K, the effective bimolecular rate constants for these reactions display a negative temperature dependence suggesting that OH addition dominates the reaction mechanisms under these conditions. This negative temperature dependence is larger than that observed at higher pressures. The measured rate constants for the OH + α‐pinene and OH + β‐pinene reactions are in good agreement with established reactivity trends relating the rate constant for OH + alkene reactions with the ionization potential of the alkene when ab initio calculated energies for the highest occupied molecular orbital are used as surrogates for the ionization potentials for α‐ and β‐pinene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 300–308, 2002  相似文献   

17.
A graphite electrode modified with silver (Ag‐CPE) has been applied to detect mercury(II) using differential pulse voltammetry (DPV). Under optimized conditions, the calibration curve is linear in the range from 5.0×10?8 mol L?1 to 1.0×10?4 mol L?1 of mercury(II). The detection limit was found to be 3.38×10?8 mol L?1 with a relative standard deviation (RSD) of 2.25 % (n=8). The proposed method was successfully applied for the detection of mercury(II) in leachate samples. The Ag‐CP composites were characterized using X‐ray diffraction (XRD), BET adsorption analysis and scanning electron microscopy (SEM).  相似文献   

18.
β‐Cyclodextrin functionalized graphene/Ag nanocomposite (β‐CD/GN/Ag) was prepared via a one‐step microwave treatment of a mixture of graphene oxide and AgNO3. β‐CD/GN/Ag was employed as an enhanced element for the sensitive determination of 4‐nitrophenol. A wide linear response to 4‐nitrophenol in the concentration ranges of 1.0×10?8–1.0×10?7 mol/L, and 1.0×10?7–1.5×10?3 mol/L was achieved, with a low detection limit of 8.9×10?10 mol/L (S/N=3). The mechanism and the heterogeneous electron transfer kinetics of the 4‐nitrophenol reduction were discussed according to the rotating disk electrode experiments. Furthermore, the sensing platform has been applied to the determination of 4‐nitrophenol in real samples.  相似文献   

19.
A series of square planar cyclometalated heteroleptic platinum(II) complexes of the type [(C^N)Pt(O^O)] [where, O^O is a β‐diketonato ligand of acetylacetone (acac), C^N = cyclometalating 7‐(4‐fluorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L1), 7‐(4‐chlorophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L2), 7‐(4‐bromophenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L3), 7‐(4‐methoxyphenyl)‐5‐phenylpyrazolo[1,5‐a]pyrimidine (L4), 5‐phenyl‐7‐(p‐tolyl)pyrazolo[1,5‐a]pyrimidine (L5)] have been design, synthesized and characterized. All compounds have been screened for biological studies like in vitro antibacterial, in vitro cytotoxicity, cellular level cytotoxicity, absorption titration, viscosity measurements, fluorescence quenching analysis, molecular docking and DNA nuclease. The intrinsic binding constants (Kb) of compounds with HS‐DNA has been obtained in range of 2.892–0.242 × 105 M?1. All the compounds bound with HS DNA by partial intercalative mode of binding. MIC study has been carried out against Gram(+ve) and Gram(?ve) bacterial species. In vitro cytotoxicity against brine shrimp lethality bioassay has been also carried out. The LC50 values of the ligands and complexes have been found in range of 56.49–120.22 μg/mL and 6.71–11.96 μg/mL, respectively.  相似文献   

20.
《Analytical letters》2012,45(11):2141-2150
Abstract

An electrochemical sensor for hydroquinone (HQ) using β‐cyclodextrin/poly(N‐acetylaniline)/carbon nanotube composite (β‐CD/PAA/MWNTs) modified glassy carbon electrode has been successfully developed. Based on the synergistic effect of MWNTs and conducting PAA polymer and the accumulation effect of β‐CD, the analytical response of the β‐CD/PAA/MWNTs film to the electrochemical behavior of HQ was better than that of a β‐CD/PAA film, a PAA/MWNTs film, a PAA film, or a bare glassy carbon (GC) electrode. Under the conditions chosen, the anodic currents increased linearly with HQ concentration from 1×10?6 to 5×10?3 mol l?1 and the detection limit was 8×10?7 mol l?1. This electrochemical sensor showed excellent reproducibility, stability and recovery for the determination of HQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号