首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The method for constructing first integrals and general solutions of nonlinear ordinary differential equations is presented. The method is based on index accounting of the Fuchs indices, which appeared during the Painlevé test of a nonlinear differential equation. The Fuchs indices indicate us the leading members of the first integrals for the origin differential equation. Taking into account the values of the Fuchs indices, we can construct the auxiliary equation, which allows to look for the first integrals of nonlinear differential equations. The method is used to obtain the first integrals and general solutions of the KdV‐Burgers and the mKdV‐Burgers equations with a source. The nonautonomous first integrals in the polynomials form are found. The general solutions of these nonlinear differential equations under at some additional conditions on the parameters of differential equations are also obtained. Illustrations of some solutions of the KdV‐Burgers and the mKdV‐Burgers are given.  相似文献   

2.
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, an efficient hybrid method has been developed for solving some special type of nonlinear partial differential equations. Hybrid method is based on tanh–coth method, quasilinearization technique and Haar wavelet method. Nonlinear partial differential equations have been converted into a nonlinear ordinary differential equation by choosing some suitable variable transformations. Quasilinearization technique is used to linearize the nonlinear ordinary differential equation and then the Haar wavelet method is applied to linearized ordinary differential equation. A tanh–coth method has been used to obtain the exact solutions of nonlinear ordinary differential equations. It is easier to handle nonlinear ordinary differential equations in comparison to nonlinear partial differential equations. A distinct feature of the proposed method is their simple applicability in a variety of two‐ and three‐dimensional nonlinear partial differential equations. Numerical examples show better accuracy of the proposed method as compared with the methods described in past. Error analysis and stability of the proposed method have been discussed.  相似文献   

4.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the complex method is used to derive meromorphic solutions to some algebraic differential equations related Painlevé equation IV, and then we illustrate our main result by some computer simulations. By the application of our result, we obtain meromorphic solutions of a nonlinear evolution equation. We can apply the idea of this study for other nonlinear evolution equations in mathematical physics.  相似文献   

6.
In this paper, we develop a new, simple, and accurate scheme to obtain approximate solution for nonlinear differential equation in the sense of Caputo‐Fabrizio operator. To derive this new predictor‐corrector scheme, which suits on Caputo‐Fabrizio operator, firstly, we obtain the corresponding initial value problem for the differential equation in the Caputo‐Fabrizio sense. Hence, by fractional Euler method and fractional trapeziodal rule, we obtain the predictor formula as well as corrector formula. Error analysis for this new method is derived. To test the validity and simplicity of this method, some illustrative examples for nonlinear differential equations are solved.  相似文献   

7.
We present new exact solutions and reduced differential systems of the Navier‐Stokes equations of incompressible viscous fluid flow. We apply the method of semi‐invariant manifolds, introduced earlier as a modification of the Lie invariance method. We show that many known solutions of the Navier‐Stokes equations are, in fact, semi‐invariant and that the reduced differential systems we derive using semi‐invariant manifolds generalize previously obtained results that used ad hoc methods. Many of our semi‐invariant solutions solve decoupled systems in triangular form that are effectively linear. We also obtain several new reductions of Navier‐Stokes to a single nonlinear partial differential equation. In some cases, we can solve reduced systems and generate new analytic solutions of the Navier‐Stokes equations or find their approximations, and physical interpretation.  相似文献   

8.
We propose a constructive method for the construction of exact solutions of nonlinear partial differential equations. The method is based on the investigation of a fixed nonlinear partial differential equation (system of partial differential equations) together with an additional condition in the form of a linear ordinary differential equation of higher order. By using this method, we obtain new solutions for nonlinear generalizations of the Fisher equation and for some nonlinear evolution systems that describe real processes in physics, biology, and chemistry. To the blessed memory of V. I. Fushchich Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 6, pp. 814–827, June, 1997.  相似文献   

9.
In this work, Exp‐function method is used to solve three different seventh‐order nonlinear partial differential KdV equations. Sawada–Kotera–Ito, Lax and Kaup–Kupershmidt equations are well known and considered for solve. Exp‐function method can be used as an alternative to obtain analytic and approximate solutions of different types of differential equations applied in engineering mathematics. Ultimately this method is implemented to solve these equations and convenient and effective solutions are obtained. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, by using the balancing method and the extended tanh-function method, we obtain the exact traveling wave solutions of Kundu equation with fifth-order nonlinear term. Applications of this method to some other nonlinear partial differential equations are also presented.  相似文献   

11.
This paper applies the variational iteration method (VIM) and semi-inverse variational principle to obtain solutions of linear and nonlinear partial differential equations. The nonlinear model is considered from gas dynamics, fluid dynamics and Burgers equation. The linear model is the heat transfer (diffusion) equation. Results show that variational iteration method is a powerful mathematical tool for solving linear and nonlinear partial differential equations, and therefore, can be widely applied to engineering problems.  相似文献   

12.
In this work, we implement some analytical techniques such as the Exp‐function, Tanh, and extended Tanh methods for solving nonlinear partial differential equation, which contains sine terms, its name Double Sine‐Gordon equation. These methods obtain exact solutions of different types of differential equations in engineering mathematics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

13.
In this article, differential transform method (DTM) has been successfully applied to obtain the approximate analytical solutions of the nonlinear homogeneous and non-homogeneous gas dynamic equations, shock wave equation and shallow water equations with fractional order time derivatives. The true beauty of the article is manifested in its emphatic application of Caputo fractional order time derivative on the classical equations with the achievement of the highly accurate solutions by the known series solutions and even for more complicated nonlinear fractional partial differential equations (PDEs). The method is really capable of reducing the size of the computational work besides being effective and convenient for solving fractional nonlinear equations. Numerical results for different particular cases of the equations are depicted through graphs.  相似文献   

14.
Huiqun Zhang 《Acta Appl Math》2009,106(2):241-249
Sub-equation methods are used for constructing exact travelling wave solutions of nonlinear partial differential equations. The key idea of these methods is to take full advantage of all kinds of special solutions of sub-equation, which is usually a nonlinear ordinary differential equation. We present a function transformation which not only gives us a clear relation among these sub-equation methods, but also can be used to obtain the general solutions of these sub-equations. And then new exact travelling wave solutions of the CKdV-MKdV equation and the CKdV equations as applications of this transformation are obtained, and the approach presented in this paper can be also applied to other nonlinear partial differential equations.   相似文献   

15.
In this paper, we present a new elliptic equation rational expansion method to uniformly construct a series of exact solutions for nonlinear partial differential equations. As an application of the method, we choose the (2 + 1)-dimensional Burgers equation to illustrate the method and successfully obtain some new and more general solutions.  相似文献   

16.
A complex tanh-function method is introduced for constructing exact travelling wave solutions of nonlinear partial differential equations with complex phases and solutions. The scheme is implemented for obtaining multiple soliton solutions to the nonlinear cubic Schrödinger equation and a generalized Schrödinger-like equation. In additon. an ansätze is proposed to obtain stationary soliton solutions of the cubic Schrödinger equation.  相似文献   

17.
New exact soliton solutions to the Cologero–Degasperies–Fokas (CDF) equations in (1+1)-dimension and (2+1)-dimension by using the improved tanh method are investigated. First, the (1+1)-dimensional CDF equation is analyzed. By the improved tanh method, the corresponding nonlinear partial differential equation is reduced to the nonlinear ordinary differential equations and then the different types of exact solutions to the original equation are obtained based on the solutions of the Riccati equation. For the case of (2+1)-dimensional CDF equation the same computation procedure is carried out. It is presented that one could obtain new exact explicit solutions, which are traveling wave solutions, to (2+1)-dimensional CDF equation. Additionally, some graphical representations of the solitary and periodic solutions are presented.  相似文献   

18.
A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on the subintervals. Substituting the values of the solutions to these problems into the boundary condition and continuity conditions at the partition points, we compose a system of nonlinear algebraic equations in parameters. A method of solving the boundary value problem with a parameter is proposed. The method is based on finding the solution to the system of nonlinear algebraic equations composed.  相似文献   

19.
A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg–de Vries–Burgers equation, the generalized Kuramoto–Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg–de Vries equation, the fifth-order modified Korteveg–de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given.  相似文献   

20.
In this paper, a effective method for searching infinite sequence periodic and solitary wave solutions to nonlinear partial differential equations (NLPDEs) is proposed. A simple transformation technique and division theorem are used to reduce some class of NLPDEs to the Riccati equation, and then the infinite sequence periodic and solitary wave solutions of some class of NLPDEs are constructed by using Bäcklund transformation of Riccati equation and nonlinear superposition principle. As illustrative examples, we obtain the infinite sequence travelling-wave solutions of the three special equations, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号