首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Achlioptas processes, starting from an empty graph, in each step two potential edges are chosen uniformly at random, and using some rule one of them is selected and added to the evolving graph. AlthouSgh the evolution of such ‘local’ modifications of the Erd?s–Rényi random graph process has received considerable attention during the last decade, so far only rather simple rules are well understood. Indeed, the main focus has been on ‘bounded‐size’ rules, where all component sizes larger than some constant B are treated the same way, and for more complex rules very few rigorous results are known. In this paper we study Achlioptas processes given by (unbounded) size rules such as the sum and product rules. Using a variant of the neighbourhood exploration process and branching process arguments, we show that certain key statistics are tightly concentrated at least until the susceptibility (the expected size of the component containing a randomly chosen vertex) diverges. Our convergence result is most likely best possible for certain generalized Achlioptas processes: in the later evolution the number of vertices in small components may not be concentrated. Furthermore, we believe that for a large class of rules the critical time where the susceptibility ‘blows up’ coincides with the percolation threshold. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 174–203, 2015  相似文献   

2.
Suppose that a random graph begins with n isolated vertices and evolves by edges being added at random, conditional upon all vertex degrees being at most 2. The final graph is usually 2‐regular, but is not uniformly distributed. Some properties of this final graph are already known, but the asymptotic probability of being a Hamilton cycle was not known. We answer this question along with some related questions about cycles arising in the process. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

3.
In 1962, Erd?s proved that if a graph G with n vertices satisfies
e(G)>maxn?k2+k2,?(n+1)2?2+n?122,
where the minimum degree δ(G)k and 1k(n?1)2, then it is Hamiltonian. For n2k+1, let Enk=Kk(kK1+Kn?2k), where “” is the “join” operation. One can observe e(Enk)=n?k2+k2 and Enk is not Hamiltonian. As Enk contains induced claws for k2, a natural question is to characterize all 2-connected claw-free non-Hamiltonian graphs with the largest possible number of edges. We answer this question completely by proving a claw-free analog of Erd?s’ theorem. Moreover, as byproducts, we establish several tight spectral conditions for a 2-connected claw-free graph to be Hamiltonian. Similar results for the traceability of connected claw-free graphs are also obtained. Our tools include Ryjá?ek’s claw-free closure theory and Brousek’s characterization of minimal 2-connected claw-free non-Hamiltonian graphs.  相似文献   

4.
Given a combinatorial design with block set , its traditional block-intersection graph is the graph having vertex set such that two vertices b1 and b2 are adjacent if and only if b1 and b2 have non-empty intersection. In this paper, we consider the S-block-intersection graph, in which two vertices b1 and b2 are adjacent if and only if |b1b2|S. As our main result, we prove that {1,2,…,t−1}-block-intersection graphs of t-designs with parameters (v,t+1,λ) are Hamiltonian whenever t3 and vt+3, except possibly when (v,t){(8,5),(7,4),(7,3),(6,3)}.  相似文献   

5.
Let Γ be a connected simple graph, let V(Γ) and E(Γ) denote the vertex-set and the edge-set of Γ, respectively, and let n=|V(Γ)|. For 1≤in, let ei be the element of elementary abelian group which has 1 in the ith coordinate, and 0 in all other coordinates. Assume that V(Γ)={ei∣1≤in}. We define a set Ω by Ω={ei+ej∣{ei,ej}∈E(Γ)}, and let CayΓ denote the Cayley graph over with respect to Ω. It turns out that CayΓ contains Γ as an isometric subgraph. In this paper, the relations between the spectra of Γ and CayΓ are discussed. Some conditions on the existence of Hamilton paths and cycles in Γ are obtained.  相似文献   

6.
We study connectivity, Hamilton path and Hamilton cycle decomposition, 4-edge and 3-vertex coloring for geometric graphs arising from pseudoline (affine or projective) and pseudocircle (spherical) arrangements. While arrangements as geometric objects are well studied in discrete and computational geometry, their graph theoretical properties seem to have received little attention so far. In this paper we show that they provide well-structured examples of families of planar and projective-planar graphs with very interesting properties. Most prominently, spherical arrangements admit decompositions into two Hamilton cycles; this is a new addition to the relatively few families of 4-regular graphs that are known to have Hamiltonian decompositions. Other classes of arrangements have interesting properties as well: 4-connectivity, 3-vertex coloring or Hamilton paths and cycles. We show a number of negative results as well: there are projective arrangements which cannot be 3-vertex colored. A number of conjectures and open questions accompany our results.  相似文献   

7.
In this paper we introduce a new hamiltonian-like property of graphs. A graph G is said to be cyclable if for each orientation D of G there is a set S of vertices such that reversing all the arcs of D with one end in S results in a hamiltonian digraph. We characterize cyclable complete multipartite graphs and prove that the fourth power of any connected graph G with at least five vertices is cyclable. If, moreover, G is two-connected then its cube is cyclable. These results are shown to be best possible in a sense. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 13–30, 1998  相似文献   

8.
For positive integers r>?, an r‐uniform hypergraph is called an ?‐cycle if there exists a cyclic ordering of its vertices such that each of its edges consists of r consecutive vertices, and such that every pair of consecutive edges (in the natural ordering of the edges) intersect in precisely ? vertices; such cycles are said to be linear when ?=1, and nonlinear when ?>1. We determine the sharp threshold for nonlinear Hamiltonian cycles and show that for all r>?>1, the threshold for the appearance of a Hamiltonian ?‐cycle in the random r‐uniform hypergraph on n vertices is sharp and given by for an explicitly specified function λ. This resolves several questions raised by Dudek and Frieze in 2011.10  相似文献   

9.
邻接树图是哈密尔顿图猜想的一个等价命题   总被引:1,自引:0,他引:1  
张兰菊 《应用数学》2000,13(4):124-129
本文给出了简单图的邻接树图是哈密尔顿图”猜想的等价命题,阐明只需证明该猜想对2-连通图成立即可,另外,我们给出了该猜想一种特殊情形的构造性证明。  相似文献   

10.
Let Gn,m,k denote the space of simple graphs with n vertices, m edges, and minimum degree at least k, each graph G being equiprobable. Let G have property Ak, if G contains ⌊(k − 1)/2⌋ edge disjoint Hamilton cycles, and, if k is even, a further edge disjoint matching of size ⌊n/2⌋. We prove that, for k ≥ 3, there is a constant Ck such that if 2mCkn then Ak occurs in Gn,m,k with probability tending to 1 as n → ∞. © 2000 John Wiley & Sons, Inc. J. Graph Theory 34: 42–59, 2000  相似文献   

11.
We show that if pn ? log n the binomial random graph Gn,p has an approximate Hamilton decomposition. More precisely, we show that in this range Gn,p contains a set of edge‐disjoint Hamilton cycles covering almost all of its edges. This is best possible in the sense that the condition that pn ? log n is necessary. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

12.
We prove that the strong product of any n connected graphs of maximum degree at most n contains a Hamilton cycle. In particular, GΔ(G) is hamiltonian for each connected graph G, which answers in affirmative a conjecture of Bermond, Germa, and Heydemann. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 299–321, 2005  相似文献   

13.
One of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erd?s‐Rényi random graph Gn,p is around . Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3‐uniform hypergraph by connecting 3‐uniform hypergraphs to edge‐colored graphs. In this work, we consider that setting of edge‐colored graphs, and prove a result which achieves the best possible first order constant. Specifically, when the edges of Gn,p are randomly colored from a set of (1 + o(1))n colors, with , we show that one can almost always find a Hamilton cycle which has the additional property that all edges are distinctly colored (rainbow).Copyright © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 44, 328‐354, 2014  相似文献   

14.
We show that provided we can with high probability find a collection of edge‐disjoint Hamilton cycles in , plus an additional edge‐disjoint matching of size if is odd. This is clearly optimal and confirms, for the above range of p, a conjecture of Frieze and Krivelevich. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 397–445, 2015  相似文献   

15.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

16.
A graph is Hamiltonian if it contains a cycle passing through every vertex. One of the cornerstone results in the theory of random graphs asserts that for edge probability , the random graph G(n, p) is asymptotically almost surely Hamiltonian. We obtain the following strengthening of this result. Given a graph , an incompatibility system over G is a family where for every , the set Fv is a set of unordered pairs . An incompatibility system is Δ‐bounded if for every vertex v and an edge e incident to v, there are at most Δ pairs in Fv containing e. We say that a cycle C in G is compatible with if every pair of incident edges of C satisfies . This notion is partly motivated by a concept of transition systems defined by Kotzig in 1968, and can be used as a quantitative measure of robustness of graph properties. We prove that there is a constant such that the random graph with is asymptotically almost surely such that for any μnp‐bounded incompatibility system over G, there is a Hamilton cycle in G compatible with . We also prove that for larger edge probabilities , the parameter μ can be taken to be any constant smaller than . These results imply in particular that typically in G(n, p) for , for any edge‐coloring in which each color appears at most μnp times at each vertex, there exists a properly colored Hamilton cycle. Furthermore, our proof can be easily modified to show that for any edge‐coloring of such a random graph in which each color appears on at most μnp edges, there exists a Hamilton cycle in which all edges have distinct colors (i.e., a rainbow Hamilton cycle). © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 49, 533–557, 2016  相似文献   

17.
In this article, we prove that there exists a maximal set of m Hamilton cycles in Kn,n if and only if n/4 < mn/2. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 25–31, 2000  相似文献   

18.
19.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

20.
We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random graph . In this model G is drawn uniformly from graphs with vertex set [n], m edges and minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently large then our algorithm runs in time and succeeds w.h.p. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 73–98, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号