首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH‐responsive amphiphilic A2B2 miktoarm star block copolymer, poly(acrylic acid)2‐poly(vinyl acetate)2 [(PAA)2(PVAc)2], with controlled molecular weight and well‐defined structure was successfully synthesized via combination of single‐electron transfer‐mediated living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization methods. First, the precursor two‐armed poly(t‐butyl acrylate) (PtBA)2 functionalized with two xanthate groups was prepared by SET‐LRP of t‐butyl acrylate in acetone at 25 °C using the novel tetrafunctional bromoxanthate (Xanthate2‐Br2) as an Iniferter (initiator‐transfer agent‐terminator) agent. The polymerization behavior showed typical LRP natures by the first‐order polymerization kinetics and the linear dependence of molecular weight of the polymer on the monomer conversion. Second, the A2B2 miktoarm star block copolymer (PtBA)2(PVAc)2 was prepared by RAFT polymerization of VAc using (PtBA‐N3)2(Xanthate)2 obtained as the macro‐RAFT agent. Finally, the pH‐sensitive A2B2 amphiphilic miktoarm star block copolymer poly(acrylic acid)2‐poly(vinyl acetate)2 ((PAA)2(PVAc)2) was obtained by selectively cleavage of t‐butyl esters of (PtBA)2(PVAc)2. All the miktoarm star block copolymers were characterized by GPC, 1H‐NMR, and FT‐IR spectra. The self‐assembly behaviors of the amphiphilic A2B2 miktoarm block copolymers (PAA)2(PVAc)2 were also investigated by transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

2.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

3.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

4.
A series of well‐defined amphiphilic graft copolymer containing hydrophobic polyallene‐based backbone and hydrophilic poly(2‐(diethylamino)ethyl acrylate) (PDEAEA) side chains was synthesized by sequential living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO) and single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl acrylate (DEAEA). Ni‐catalyzed living coordination polymerization of MHDO was first performed in toluene to give a well‐defined double‐bond‐containing poly(6‐methyl‐1,2‐heptadiene‐4‐ol) (PMHDO) homopolymer with a low polydispersity (Mw/Mn = 1.10). Next, 2‐chloropropionyl chloride was used for the esterification of pendant hydroxyls in every repeating unit of the homopolymer so that the homopolymer was converted to PMHDO‐Cl macroinitiator. Finally, SET‐LRP of DEAEA was initiated by the macroinitiator in tetrahydrofuran/H2O using CuCl/tris(2‐(dimethylamino)ethyl)amine as catalytic system to afford well‐defined PMHDO‐g‐PDEAEA graft copolymers (Mw/Mn ≤ 1.22) through the grafting‐from strategy. The critical micelle concentration (cmc) was determined by ?uorescence spectroscopy with N‐phenyl‐1‐naphthylamine as probe and the micellar morphology was visualized by transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
The new SET‐LRP (using Cu(0) powder for organic synthesis) was successfully used to produce well‐defined linear and star homo‐ and diblock‐copolymers of PMA, PSA, and P(MA‐b‐GA)n (where n = 1 or 4). The kinetic data showed that all SET‐LRP were first order and reached high conversions in a short period of time. The other advantage of using such a system is that the copper can easily be removed through filtration, allowing the production of highly pure polymer. The molecular weight distributions were well controlled with polydispersity indexes below 1.1 and the number‐average molecular weight close to theory, especially upon the addition of Cu(II)Br2/Me6‐TREN complex. The linear and star block copolymers were then hydrolyzed to produce the biocompatible amphiphilic P(MA‐b‐GA)n, where the glycerol side‐groups make the outer block hydrophilic. These blocks were micellized into water and found to have a Rg/RH equal to 0.8 and 1.59 for the liner and star blocks, respectively. This together with the TEM's supported that the linear blocks formed the classical core‐shell micelles, where as, the star blocks formed vesicles. We found direct support for the vesicle structure from a TEM where one vesicle squashed a second vesicle consistent with a hollow structure. Such vesicle structures have potential applications as delivery nanoscaled devices for drugs and other important biomolecules. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6346–6357, 2008  相似文献   

6.
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSnb‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSnb‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3b‐PVAc and PVAc2b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

8.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

9.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

10.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The synthesis of poly(tert‐butyl acrylate‐block‐vinyl acetate) copolymers using a combination of two living radical polymerization techniques, atom transfer radical polymerization (ATRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization, is reported. The use of two methods is due to the disparity in reactivity of the two monomers, viz. vinyl acetate is difficult to polymerize via ATRP, and a suitable RAFT agent that can control the polymerization of vinyl acetate is typically unable to control the polymerization of tert‐butyl acrylate. Thus, ATRP was performed to make poly(tert‐butyl acrylate) containing a bromine end group. This end group was subsequently substituted with a xanthate moiety. Various spectroscopic methods were used to confirm the substitution. The poly(tert‐butyl acrylate) macro‐RAFT agent was then used to produce (tert‐butyl acrylate‐block‐vinyl acetate). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7200–7206, 2008  相似文献   

12.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

14.
Dopamine‐containing monomers, N‐3,4‐dihydroxybenzenethyl methacrylamide (DMA) and dimethylaminoethyl methacrylate (DMAEMA), are successfully copolymerized in a well‐controlled manner via ambient temperature single‐electron transfer initiation and propagation through the radical addition fragmentation chain transfer (SET‐RAFT) method. The controlled behaviors of the copolymerization are confirmed by the first‐order kinetic plots, the linear relationships between molecular weights, and the monomer conversions while keeping relatively narrow molecular weight distribution (Mw/Mn ≤ 1.45). Moreover, biomimetic self‐assembly of poly(N‐3,4‐dihydroxybenzenethyl methacrylamide‐co‐dimethylaminoethyl methacrylate) PDMA‐co‐PDMAEMA and inorganic particles are employed to prepare tunable honeycomb‐like porous hybrid particles (HPHPs) by regulating the predesigned chemical composition. In addition, the inorganic sacrificial templates are successfully selective etched for the formation of porous organic materials.

  相似文献   


15.
The tadpole‐shaped amphiphilic copolymers with cyclic polystyrene as the head and a linear poly(N‐isopropylacrylamide) as the tail have been successfully synthesized by combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and “click” reaction. The synthesis involves two main steps: (1) preparation of a linear acetylene‐terminated PNIPAAM‐b‐PS with a side azido group anchored at the junction between two blocks; (2) intramolecular cyclization reaction to produce the cyclic PS block using “click” chemistry under high dilution. The structures, molecular weights, and molecular weight distributions of the resulted intermediates and the target polymers were characterized by their 1H NMR, FTIR, and gel permeation chromatography. The difference of surface property between tadpole‐shaped polymer and its linear precursor was observed, and the water contact angles on the former surface are larger than that of the latter surface. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2390–2401, 2008  相似文献   

16.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
18.
The Cu(0)/Me6‐TREN‐catalyzed single‐electron transfer mediated living radical polymerization (SET‐LRP) of methyl acrylate in the presence of the classic 4‐methoxyphenol free radical inhibitor was investigated. Kinetic experiments, combined with 1H NMR, and MALDI‐TOF MS analysis of the resulting polyacrylates demonstrated that SET‐LRP is a robust synthetic method that does not require the purification of the monomers to remove the radical inhibitor. It is anticipated that these results will contribute to the expansion of technological and fundamental applications of SET‐LRP since it allows the synthesis of polymers with a structural perfection that previously was not accessible by any other method, starting from unpurified monomers, solvents, initiators, and ligands. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3174–3181, 2008  相似文献   

19.
Single electron transfer‐living radical polymerization (SET‐LRP) provides an excellent tool for the straightforward synthesis of well‐defined macromolecules. Heterogeneous Cu(0)‐ catalysis is employed to synthesize a novel photoresist material with high control over the molecular architecture. Poly(γ‐butyrolactone methacrylate)‐co‐(methyladamantly methacrylate) was synthesized. Kinetic experiments were conducted demonstrating that both monomers, γ‐butyrolactone methacrylate (GBLMA) and methyl adamantly methacrylate (MAMA), are successfully homopolymerized. In both cases polymerization kinetic is of first order and the molecular weights increase linearly with conversion. The choice of a proper solvent was decisive for the SET‐LRP process and organic solvent mixtures were found to be most suitable. Also, the kinetic of the copolymerization of GBLMA and MAMA was investigated. Following first order kinetics in overall monomer consumption and exhibiting a linear relationship between molecular weights and conversion a “living” process was established. This allowed for the straightforward synthesis of well‐defined photoresist polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2251–2255, 2010  相似文献   

20.
High performance polyacrylonitrile (PAN) was prepared with Mg powder as both reducing agent (RA) and supplemental activator (SA) by single electron transfer‐living radical polymerization (RASA SET‐LRP). First‐order kinetics of polymerization with respect to monomer concentration, linear increase of molecular weight, and narrow polydispersity with monomer conversion, and the obtained high isotacticity PAN indicate that RASA SET‐LRP in the presence of Mg powder could simultaneously control molecular weight and tacticity of PAN. compared with that obtained with ascorbic acid (VC) as RA, an obvious increase in isotacticity of PAN was observed. the block copolymer pan‐b‐pAN with molecular weight at 112,460, polydispersity at 1.33, and isotacticity at 0.314 was successfully prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3328–3332  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号