共查询到20条相似文献,搜索用时 15 毫秒
1.
Han‐Yu Wu Kun‐Li Wang Jyh‐Chiang Jiang Der‐Jang Liaw Kueir‐Rarn Lee Juin‐Yih Lai Ci‐Liang Chen 《Journal of polymer science. Part A, Polymer chemistry》2010,48(18):3913-3923
A new rapid switching near‐IR electrochromic conjugated propeller‐shape polymer (PBTPAFL) with lower oxidation potential containing a di‐triarylamine group was synthesized via Suzuki coupling approach. The observed UV‐vis‐NIR absorption changes in the PBTPAFL film at various potentials are fully reversible and associated with strong color changes from the original light green to dark green and then to a Prussian blue. Excellent continuous cyclic stability of the electrochromic characteristics with a rapid color switching time 2.58 s and bleaching time 1.76 s was found as well. Compared with P1 and P2, the introduction of more electron‐donating propyl phenyl group in the para position of PBTPAFL lowered the oxidative potential and prevented coupling reaction during the electrochromic procedure. The high molecular weight conjugated polymer having high thermal stability with Td10 more than 450 °C has excellent solubility in common organic solvents such as NMP, THF, chloroform, toluene, xylene, and benzene at room temperature (25 °C) due to the propeller‐shape structure and long alkyl chain on fluorene. Herein, from the combination of the experimental and computational study, we proposed a mechanism on the basis of the molecular orbital theory to explain the electrochromic oxidation behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3913–3923, 2010. 相似文献
2.
Umit Hakan Yildiz Elif Sahin Idris M. Akhmedov Cihangir Tanyeli Levent Toppare 《Journal of polymer science. Part A, Polymer chemistry》2006,44(7):2215-2225
A new polythiophene derivative was synthesized by both chemical and electrochemical oxidative polymerization of 1‐(1‐phenylethyl)‐2,5‐di(2‐thienyl)‐1H‐pyrrole (PETPy). Of which the chemical method produces a polymer that is completely soluble in organic solvents. The structures of both the monomer and the soluble polymer were elucidated by nuclear magnetic resonance (1H and 13C NMR) and Fourier transform infrared (FTIR) spectroscopy. The average molecular weight has been determined by gel permeation chromatography to be Mn = 3.29 × 103 for the chemically synthesized polymer. Polymer of PETPy was synthesized via potentiostatic electrochemical polymerization in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent–electrolyte couple. Characterizations of the resulting polymer were performed by cyclic voltammetry, FTIR, scanning electron microscopy, and UV–vis spectroscopy. Four‐probe technique was used to measure the conductivities of the samples. Moreover, the spectroelectrochemical and electrochromic properties of the polymer films were investigated. In addition, dual‐type polymer electrochromic devices based on P(PETPy) with poly(3,4‐ethylenedioxythiophene) were constructed. Spectroelectrochemistry, electrochromic switching, and open circuit stability of the devices were studied. They were found to have good switching times, reasonable contrasts, and optical memories. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2215–2225, 2006 相似文献
3.
Ozlem Usluer Sermet Koyuncu Serafettin Demic René A. J. Janssen 《Journal of Polymer Science.Polymer Physics》2011,49(5):333-341
A novel electroactive spirocyclododecylfluorene monomer named 2,7‐bis(carbazol‐9‐yl)‐9,9′‐spiro[cyclododecane‐1,9′‐fluorene] (SFC) was synthesized and electrochemically polymerized to give a very stable multi‐electrochromic polymer (poly‐SFC). Two separate oxidation processes were observed for both SFC monomer and poly‐SFC that carries two carbazole units. The polymeric film of poly‐SFC was coated onto ITO/glass surface, and it shows different colors (transparent, yellowish green, green, and dark green) upon stepwise oxidations. An electrochromic device based on poly‐SFC was assembled in the sandwich cell configuration of ITO/poly‐SFC//gel electrolyte//PEDOT/ITO. Poly‐SFC exhibits 90% of transparency at neutral state and a high contrast ratio (ΔT = 58% at 800 nm). This device constructed from it represents a response time of about 1 s, high coloration efficiency (1377 cm2 C–1) and retained its performance by 96.4% even after 1000 cycles. Exhibiting high transparency at neutral state, reversible redox behavior, resistance to overoxidation, and especially high contrast ratio at near IR region can make poly‐SFC be useful and promising candidate for electrochromic applications despite having a relatively slow response time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献
4.
M. Jayakannan Paul A. van Hal Ren A. J. Janssen 《Journal of polymer science. Part A, Polymer chemistry》2002,40(2):251-261
We have synthesized three new donor–acceptor‐type monomers to achieve soluble and processable low‐band gap polymers, 4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B4TB), 4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B3TB), and 4‐(3‐octyl‐2‐thienyl)‐7‐(4‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole (B34TB), by the Suzuki coupling reaction. Using B4TB and B3TB, two soluble high molecular weight regioregular head‐to‐head and tail‐to‐tail polymers poly[4,7‐bis(4‐octyl‐2‐thienyl)‐2,1,3‐ benzothiadiazole] (PB4TB) and poly[4,7‐bis(3‐octyl‐2‐thienyl)‐2,1,3‐benzothiadiazole] (PB3TB) were prepared via iron(III) chloride‐mediated oxidative polymerization. The structures of the polymers were confirmed by 1H and 13C NMR, and the molecular weights were determined by size exclusion chromatography. The optical properties (absorbance and fluorescence) of the monomers and polymers were studied and compared with unsubstituted analogues. The monomers and polymers bearing octyl substituents on the thiophene rings pointing away from the benzothiadiazole units (B4TB and PB4TB) possess a more planar structure, and their optical spectra appear redshifted as compared with those having the octyl chain nearer to the benzothiadiazole (B3TB and PB3TB). The optical band gaps of PB3BT (Eg = 2.01 eV) and PB4BT (Eg = 1.96 eV), however, are at much higher energy levels than that of the unsubstituted electrochemically polymerized PBTB material (Eg = 1.1–1.2 eV) as a result of steric effects of the octyl chains. The electrochemical properties of the monomers and polymers were examined using cyclic voltammetry and reflect the effect of alkyl substitution. B4TB and PB4TB were oxidized at a lower potential than B3TB and PB3TB, whereas their reduction potentials were less negative. The electrochemical band gap calculated from the onset of the reduction and oxidation process agreed with the optical band gap calculated from the absorption edges. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 251–261, 2002 相似文献
5.
Ryousuke Yoshii Atsushi Nagai Kazuo Tanaka Yoshiki Chujo 《Journal of polymer science. Part A, Polymer chemistry》2013,51(8):1726-1733
It is challenging to realize the near‐infrared (NIR) emission with large brightness and sharp spectra from the conjugated polymers. In this study, we demonstrate the strategy for receiving strong and pure NIR emission from polymeric materials using organoboron complexes and the modification after polymerization. A series of NIR emissive conjugated polymers with boron di(iso)indomethenes (BODINs) and fluorene or bithiophene were synthesized by Suzuki–Miyaura coupling reaction. The obtained polymers exhibited high emissions in the range from deep‐red to NIR region (quantum yields: ?PL = 0.40–0.79, full width at half maximum height: Δλ1/2 = 660–940 cm?1, emission maxima: λPL = 686–714 nm). Next, the demethylation of the BODIN‐based polymer with o‐methoxyphenyl groups was carried out. The transformation of the polymer structure quantitatively proceeded via efficient intramolecular crosslinking through the intermediary of the boron atom. Finally, the resulting polymer showed both drastically larger red‐shifted and sharper photoluminescence spectrum than that of the parent polymer with deep‐red emission (?PL = 0.37, Δλ1/2 = 460 cm?1, λPL = 758 nm). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
6.
Low band‐gap diketopyrrolopyrrole‐containing polymers for near infrared electrochromic and photovoltaic applications 下载免费PDF全文
Jonathan Zhaozhi Low Wei Teng Neo Qun Ye Wen Jie Ong Ivy Hoi Ka Wong Ting Ting Lin Jianwei Xu 《Journal of polymer science. Part A, Polymer chemistry》2015,53(10):1287-1295
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295 相似文献
7.
Sheng‐Huei Hsiao Pei‐Chi Chang Hui‐Min Wang Yu‐Ruei Kung Tzong‐Ming Lee 《Journal of polymer science. Part A, Polymer chemistry》2014,52(6):825-838
A novel triphenylamine (TPA)‐containing bis(ether anhydride) monomer, namely 4,4′‐bis(3,4‐dicarboxyphenoxy)triphenylamine dianhydride, was synthesized and reacted with various aromatic diamines leading to a series of new poly(ether‐imide)s (PEI). Most of these PEIs were soluble in organic solvents and could be easily solution cast into flexible and strong films. The polymer films exhibited good thermal stability with glass‐transition temperatures in the range 211–299 °C. The polymer films exhibited reversible electrochemical processes and stable color changes (from transparent to navy blue) with high coloration efficiency and contrast ratio upon electro‐oxidation. During the electrochemical oxidation process, a crosslinked polymer structure was developed due to the coupling reaction between the TPA radical cation moieties in the polymer chains. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 825–838 相似文献
8.
Ryousuke Yoshii Atsushi Nagai Yoshiki Chujo 《Journal of polymer science. Part A, Polymer chemistry》2010,48(23):5348-5356
Near‐infrared (NIR) emissive conjugated polymers were prepared by palladium‐catalyzed Sonogashira polymerization of diiodobenzene‐functionalized aza‐borondipyrromethene (Aza‐BODIPY) monomers, which were substituted at 3 and 5 or 1 and 7 positions on the Aza‐BODIPY core, with 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene or 3,3′‐didodecyl‐2,2′‐diethynyl‐5,5′‐bithiophene. The structures of the polymers were confirmed by 1H NMR, 13C NMR, 11B NMR, Fourier transform infrared (FT‐IR) spectroscopies, and size exclusion chromatography (SEC). The optical properties were then characterized by UV–vis absorption and photoluminescence (PL) spectroscopies, and theoretical calculation using density‐functional theory (DFT) method. The polymers were fusible and soluble in common organic solvents including tetrahydrofuran (THF), o‐xylene, toluene, CHCl3, and CH2Cl2, etc. The UV–vis absorption and PL spectra of the polymers shifted to long wavelength region in comparison with simple Aza‐BODIPY as the counterpart because of extended π‐conjugation of the polymers. The polymers efficiently emitted NIR light with narrow emission bands at 713~777 nm on excitation at each absorption maximum. Especially, the polymer attached 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene to 3,5‐position on the core revealed intense quantum yields (?F = 24%) in this NIR region (753 nm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
9.
Iffat H. Nayyar Enrique R. Batista Sergei Tretiak Avadh Saxena Darryl L. Smith Richard L. Martin 《Journal of Polymer Science.Polymer Physics》2013,51(12):935-942
We use the long‐range‐corrected hybrid density functional theory models to study the effect of various conformational distortions of weak‐trans and strong‐cis nature on the spatial localization of charged states in poly(p‐phenylene vinylene) (PPV) and its derivative poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEH‐PPV). The extent of self‐trapping of positive (P+) and negative (P?) polarons is observed to be highly sensitive to molecular conformation that, in turn, controls the distribution of atomic charges within the polymers. It is shown that, to reach good agreement with recent experimental data on lattice distortion for P+ and P? excitations, the polarization of the medium plays a critical role. The introduction of weak‐trans defects along the MEH‐PPV chain breaks the observed symmetry for P+ and P? excitations. The P? states exhibit more spatial localization owing to lattice relaxation than their vacuum counterparts in contrast to P+. These observations suggest higher mobilities of holes than that of electrons in MEH‐PPV, in agreement with the experimental observations. The predicted binding, reorganization, and solvation energies for PPV and MEH‐PPV are analyzed for this difference in the response behavior of holes and electrons for trans and cis distortions. This study allows for a better understanding of charge‐transport and photophysical properties in π‐conjugated organic materials by analyzing their underlying structure–property correlations. © 2013 Wiley Periodicals, Inc. 1 1 This article is a U.S. Government work, and as such, is in the public domain in the United States of America.
J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 935–942 相似文献
J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 935–942 相似文献
10.
Ozan Erlik Naime A. Unlu Gonul Hizalan Serife O. Hacioglu Seda Comez Esra D. Yildiz Levent Toppare Ali Cirpan 《Journal of polymer science. Part A, Polymer chemistry》2015,53(13):1541-1547
In this study, four novel silafluorene (SiF) and benzotriazole (Btz) bearing conjugated polymers are synthesized. In the context of electrochemical and optical studies, these polymers are promising materials both for electrochromic device (ECD) and polymer solar cell (PSC) applications. All of the polymers are ambipolar (both p‐ and n‐dopable) and multichromic. Electrochemistry experiments indicate that incorporation of selenophene instead of thiophene unit increases the HOMO energy level of the polymers. Power conversion efficiency of the PSCs reached 1.75% for PTBTSiF, 1.55% for PSBSSiF, 2.57% for PBTBTSiF, and 1.82% for PBSBSSiF. The hole mobilities of the polymers are estimated through space charge limited current (SCLC) model. PBTBTSiF has the highest hole mobility as 2.44 × 10?3 cm2 V s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1541–1547 相似文献
11.
Yasemin Arslan Udum Ersin Yildiz Gorkem Gunbas Levent Toppare 《Journal of polymer science. Part A, Polymer chemistry》2008,46(11):3723-3731
A new electrochromic polymer, poly(2,3,5,8‐tetra(thiophen‐2‐yl)quinoxaline) (PTTQ), was synthesized electrochemically and its electrochromic properties were investigated. The polymer was characterized by Cyclic Voltammetry, Fourier Transform infrared spectroscopy, UV‐Vis‐NIR Spectroscopy, and colorimetry. Spectroelectrochemistry analysis demonstrated that the polymer can undergo both p‐ and true n‐type doping processes. The polymer, (PTTQ), has three accessible color states: an oxidized transmissive, a neutral light bluish‐green, and a reduced transmissive light gray. Switching ability of the polymer was evaluated by kinetic studies. The polymer revealed an excellent optical contrast of 98% in the NIR region. Outstanding optical contrast in the NIR region, high stability and fast switching times make this polymer an excellent candidate for NIR device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3723–3731, 2008 相似文献
12.
Xiaoyan Yang Changlong Liu Jiabao Guo Ling Wang Guangming Nie 《Journal of polymer science. Part A, Polymer chemistry》2017,55(14):2356-2364
Free‐standing poly(5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole) (PETI) was electrochemically obtained from 5,7‐bis(2‐(3,4‐ethylenedioxy)thienyl)‐indole (ETI) prepared by Stille coupling reaction of 5,7‐dibromoindole and 3,4‐ethylenedioxythiophene. For comparison, poly(5,7‐bis(2‐thiophene)‐indole) was also electrosynthesized from 5,7‐bis(2‐thiophene)‐indole (BTI) which was prepared from the 5,7‐dibromoindole and thiophene. Characterizations of ETI and BTI were performed by cyclic voltammetry, scanning electron microscopy, 1H NMR, and 13C NMR spectroscopy. Spectroelectrochemical studies showed PETI had better electrochromic properties and showed two different colors (brown and blue‐violet) under various potentials with better maximum contrast (ΔT%) and coloration efficiency (CE). An electrochromic device (ECD) based on PETI and poly(3,4‐ethylenedioxythiophene) (PEDOT) was also constructed and characterized. This ECD had fast response time, high CE, better optical memory, and long‐term stability. These results indicated that PETI had potential applications for ECD. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2356–2364 相似文献
13.
Chun‐Guey Wu Ming‐I Lu Min‐Fong Jhong 《Journal of Polymer Science.Polymer Physics》2008,46(12):1121-1130
Organic soluble, oleic acid capped TiO2 nano‐rod was well‐mixed with the electrochromic polymer: Poly‐(4,4‐dioctylcyclopenta[2,1‐b:3,4‐b′]‐dithiophene (PDOCPDT) to form TiO2/PDOCPDT nanocompsoite. TiO2/PDOCPDT film showed high electrochemical stability and its coloration efficiency is 1.5 times of that for pure PDOCPDT. The function of TiO2 nano‐rods can be regarded as a dispersion agent. PDOCPDT chains in TiO2/PDOCPDT may have a less aggregated structure and more open morphology, therefore has higher coloration efficiency. TiO2 may also act as electron transport or temporary electron storage centers, electrons can be transferred reversibly between PDOCPDT and TiO2 nano‐rods. TiO2/PDOCPDT is well‐soluble in CHCl3, large area thin films can be fabricated reproducibly simply by spin coating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1121–1130, 2008 相似文献
14.
Mingliang Sun Xi Jiang Li Wang Chao He Bin Du Renqiang Yang Yong Cao 《Journal of polymer science. Part A, Polymer chemistry》2008,46(9):3007-3013
A series of random low band‐gap conjugated copolymers (PFO‐DDTQ) derived from 9,9‐dioctylfluorene (DOF) and 6,7‐dimethyl‐4,9‐di(4‐hexylthien‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxalines (DDTQ) are prepared by the palladium‐catalyzed Suzuki coupling reaction. The obtained polymers are readily soluble in common organic solvents. The thin solid films of the polymers absorb light from 300 to 840 nm with two absorbance peaks at around 380 and 710 nm. Electroluminescent peaks are between 0.8 and 0.9 μm based on the polymers. The maximal external quantum efficiency reaches 0.30% with the emission peak at 824 nm from PFO‐DDTQ1 based devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3007–3013, 2008 相似文献
15.
Barry C. Thompson Luis G. Madrigal Mauricio R. Pinto Tae‐Sik Kang Kirk S. Schanze John R. Reynolds 《Journal of polymer science. Part A, Polymer chemistry》2005,43(7):1417-1431
We report a comparative study of two organic soluble, vinylene‐based, alternating donor–acceptor copolymers with 1,4‐(2,5‐dihexadecyloxyphenylene) as the donor; the acceptor is either a 2,5‐linked pyridine or a 5,8‐linked 2,3‐diphenylpyrido[3,4‐b]pyrazine. The polymers are synthesized via a Heck coupling methodology from a dihalo monomer and a divinyl monomer to yield number‐average molecular weights of 16,000 g/mol for the pyridine polymer (PPyrPV) and 6500 g/mol for the pyridopyrazine polymer (PPyrPyrPV), with high solubility in common chlorinated solvents and lower solubility in less polar solvents (e.g., tetrahydrofuran). Thin‐film measurements show band gaps of 2.2 and 1.8 eV for PPyrPV and PPyrPyrPV, respectively. Both polymers exhibit photoluminescence in solution and in the solid state and exhibit electroluminescence when incorporated into light‐emitting diodes. In this case, a broad red emission centered at 690 nm for PPyrPV and a near‐infrared emission centered at 800 nm for PPyrPyrPV have been observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1417–1431, 2005 相似文献
16.
M. Jayakannan Paul A. Van Hal Ren A. J. Janssen 《Journal of polymer science. Part A, Polymer chemistry》2002,40(14):2360-2372
Novel alternating conjugated copolymers ( P1–P6 ) consisting of an electron‐deficient benzothiadiazole and a variety of electron‐rich thiophene‐arene‐thiophene units were synthesized by palladium‐catalyzed polycondensations (Stille and Suzuki reactions), aiming at processable materials with a reduced optical band gap. The structures of P1–P6 were confirmed by 1H NMR and 13C NMR, and their molecular weights were determined by size exclusion chromatography. In the Suzuki polycondensation, the role of the catalyst [Pd(PPh3)4 and Pd(OAc)2] on the resulting molecular weight was investigated. Pd(OAc)2 enhances the molecular weight of the polymers for both thiophene and phenylene bis‐boronic esters as compared with Pd(PPh3)4. The optical properties of the polymers were examined in solution and the solid state. The polymers with n‐octyl substituents ( P1 , P4 , P5 , and P6 ) on the thiophene rings possessed less‐planar structures as a result of torsional steric hindrance, and their absorption spectra appeared blueshifted as compared with their unsubstituted analogues ( P2 and P3 ). The electrochemical properties of the polymers were studied using cyclic voltammetry. Although the alkyl substitution affects the oxidation potential, only marginal differences in the reduction potentials were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2360–2372, 2002 相似文献
17.
Ivan Kmínek Drahomír Výprachtický Jaroslav Kříž Jiří Dybal Věra Cimrová 《Journal of polymer science. Part A, Polymer chemistry》2010,48(13):2743-2756
Novel low‐band gap alternating copolymers consisting of 9,9‐bis(2‐ethylhexyl)fluorene and 4,6‐di(2‐thienyl)thieno[3,4‐c][1,2,5]thiadiazole and its 3,3″‐dialkyl derivatives were synthesized by Suzuki copolymerization reaction, and their photophysical and electrochemical properties were studied. The copolymers possess small optical band gap 1.3–1.4 eV. The absorption covers the whole visible spectral region. The long‐wavelength absorption maxima in thin films located at approximately 750–785 nm are significantly red shifted compared with those in solution, indicating strong intermolecular interactions. The introduction of alkyl chains to the thiophene units increases the molecular weights of soluble fractions and solubility of the final copolymers, leading to the improved processability of thin films. Polymer solutions exhibited solvatochromism and thermochromism, which is strongly supported by the involvement of the alkyl chains. The copolymers exhibited ambipolar redox properties and reversible electrochromic behavior. The electronic properties are influenced only slightly by alkyl substituents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2743–2756, 2010 相似文献
18.
Meixiu Wan Weiping Wu Guangyi Sang Yingping Zou Yunqi Liu Yongfang Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(16):4028-4036
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009 相似文献
19.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(2):242-251
Stereoregular polymers like isotactic poly(N‐butenyl‐carbazole) (i‐PBK), isotactic and syndiotactic poly(N‐pentenyl‐carbazole) (i‐PPK and s‐PPK), and poly(N‐hexenyl‐carbazole) (i‐PHK and s‐PHK) are synthesized using the stereospecific homogeneous “single site” Ziegler‐Natta (Z‐N) catalysts: rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride ( 1 )/methylaluminoxane (MAO) and diphenylmethylidene(cyclopentadienyl)‐(9‐fluorenyl)zirconium dichloride ( 2 )/MAO. Catalytic activity is rationalized by density functional theory (DFT) calculations. All synthesized polymers are fully characterized by NMR, thermal, wide‐angle X‐ray diffraction, and fourier transform infrared spectroscopy analysis. Fluorescence measurements on isotactic and syndiotactic polymer films indicate that all polymers give rise to excimers, both “sandwich‐like” and “partially overlapping.” Excimer formation is essentially driven by the polymer tacticity. Isotactic polymers generate both sandwich‐like and partially overlapping excimers, while syndiotactic polymers give rise especially to partially overlapping ones. A theoretical combined molecular dynamics–time dependent DFT approach is also used to support the experimental results. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 242–251 相似文献
20.
Hai‐Sub Na Yasuhiro Morisaki Yasuhiro Aiki Yoshiki Chujo 《Journal of polymer science. Part A, Polymer chemistry》2007,45(14):2867-2875
Novel π‐conjugated polymers ( 8 – 10 ) were prepared by the palladium‐catalyzed Sonogashira coupling reaction of three kinds of phosphole‐ring‐containing monomers with 2,5‐dihexyloxyl‐1,4‐diethynylbenzene. The obtained polymers ( 8 – 10 ) were regioregulated with the 2,5‐substituted phosphole ring in the polymer main chain and characterized with 1H, 13C, and 31P NMR and FTIR. Polymers 8 – 10 were found to have an extended π‐conjugated system according to the results of UV–vis absorption spectra. In the fluorescence emission spectra of 8 – 10 , moderate emission peaks were observed in the visible blue‐to‐green region. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2867–2875, 2007 相似文献