首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
An online continuous-flow method, combining a thermal conversion elemental analyzer (TC/EA) with isotope ratio mass spectrometry (MS), is evaluated for the determination of both the hydrogen isotope composition and the water concentration of hydrous and nominally anhydrous minerals. The technique involves reduction of hydrous minerals or nominally anhydrous minerals by reaction with glassy carbon at 1450 degrees C in a helium stream. The product gases, H2 and CO, are separated on a gas chromatographic column prior to analysis in the mass spectrometer. Calibration curves for the H concentration analysis were generated from a standard of benzoic acid (C7H6O2) that has an H concentration of 5.0 wt%; the analytical uncertainties were better than +/-0.05% in our runs. Two standards of material with given D values, polyethylene IAEA-CH-7 and biotite NBS-30, were tested for the purpose of calibrating a natural garnet 04BXL02 representing nominally anhydrous minerals. Preheating at 90 degrees C for 12 h was found to be suitable for removing adsorption water on the sample surface. This results in constant D values and total H2O contents for the garnet, with weighted means of -94 +/- 1 and 522 +/- 11 ppm (wt), respectively. The TC/EA-MS technique allows routine analysis of sample sizes as small as 0.01 microL H2O. For natural minerals, absolute reproducibilities for D values are +/-0.5 to +/-2 (1) and relative uncertainties for total H2O concentrations are at levels of +/-1% to +/-3% (1). Therefore, this online method can be used for the quantitative determination of H isotope composition and H2O concentration of either hydrous or anhydrous minerals.  相似文献   

4.
Chlorine stable isotope analyses of inorganic samples were conducted using continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with gas chromatography (GC). Inorganic chloride was precipitated in the form of silver chloride (AgCl) by using silver nitrate in a standard methodology. Chlorine stable isotope analysis was carried out on methyl chloride (CH3Cl) after converting AgCl into CH3Cl by reacting it with methyl iodide (CH3I). The reaction between AgCl and CH3I took place in 20 mL size vials. Addition of CH3I was performed in a glove bag under helium flow. An Agilent 6890 gas chromatograph equipped with a CTC Analytics CombiPAL autosampler and a DB-5MS 60 m column was used to separate CH3Cl from CH3I. This new technique uses samples as small as 0.2 mg of AgCl (1.4 micromol of Cl-). The chlorine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure CH3Cl gas is better than +/-0.04 per thousand (+/-STDV). The external precision using seawater standard is better than +/-0.07 per thousand (+/-STDV) for n=12. Moreover, the sample analysis time is much shorter and many more samples can be analyzed in one day than by using the conventional off-line techniques.  相似文献   

5.
Over the past few years numerous dual inlet isotope ratio mass spectrometry (IRMS) applications have been adapted to continuous flow systems which allow the automation of sample admission and a higher throughput. The isotopomer analysis of urea nitrogen by IRMS requires the offline conversion of urea into nitrogen gas before analysis. The oxidation of urea with LiOBr results in the monomolecular degradation of urea, which preserves the identity of the parent urea molecule, and has to be conducted under vacuum to prevent contamination with atmospheric nitrogen. We have developed an offline system of urea degradation utilizing disposable Exetainers, in which atmospheric nitrogen is displaced by helium. Recovery of urea nitrogen was linear within the range of the standards tested (0 to 420 microg nitrogen) and standard curves for 15N15N-urea standards showed high coefficients of determination (R2 > 0.9998). A small portion of urea degrades in a non-monomolecular fashion and has been shown to depend on the concentration of urea in the sample. Long-term storage of prepared samples showed a decline in 15N15N enrichment, suggesting air contamination. However, samples were stable for 24 h, which allows for the analysis of large sample batches. Interest in urea metabolism, particularly in ruminant species, has increased recently due to the environmental implications of urea and nitrogen excretion by farm animals. This novel analytical method will allow for accurate measurements and the rapid throughput needed in order to support these field studies.  相似文献   

6.
A simple method for the determination of nanomole amounts of (13)CO(2) generated from an in vitro reaction is reported. The incubation medium contains a known amount of unlabeled sodium bicarbonate and the gaseous (13)CO(2) enriches the atmosphere upon which a measurement of the isotopic enrichment ((13)CO(2)/(12)CO(2)) is made corresponding to a reverse isotope dilution. The quantification of the (13)CO(2) was performed by gas chromatography/isotope ratio mass spectrometry. This assay was validated in terms of linearity, accuracy and precision using three different substrates which produce (13)CO(2) either by enzymatic reaction [(13)C]urea, sodium [(13)C]formate) or by chemical reaction (sodium [(13)C]bicarbonate). Four calibration curves were tested for each (13)C-labeled substrate, allowing the quantification of (13)CO(2) from 25 pmol to 150 nmol. The dynamics of the assay were obtained as a function of the quantity of unlabeled sodium bicarbonate added to each sample.  相似文献   

7.
8.
9.
We report a method for the determination of delta(18)O isotopic abundance in olive oils. The results obtained by applying the method to various Andalusian oil samples obtained in the 2004/05 and 2005/06 seasons are discussed in relation to olive variety, geographical origin, climate and ripeness index. Application of the method to samples of assured varietal purity exposed the influence of olive variety and origin but not of the ripeness index. The delta(18)O values for the 2005/06 season are higher on average than those obtained in the colder 2004/05 season. Results obtained for samples of the Picual and Hojiblanca varieties in Córdoba and Málaga in the 2005/06 season suggest a correlation between enrichment in heavy isotopes and latitude whereas no clear-cut effect of altitude was observed.  相似文献   

10.
Li CF  Li XH  Li QL  Guo JH  Li XH  Liu T 《Analytica chimica acta》2011,706(2):297-304
A single-step separation scheme is presented for Sm–Nd radiogenic isotope system on very small samples (1–3 mg) of silicate rock. This method is based on Eichrom® LN Spec chromatographic material and affords a straightforward separation of Sm–Nd from complex matrix with good purity and satisfactory blank levels, suitable for thermal ionization mass spectrometry (TIMS).This technique, characterized by high efficiency (single-step Sm–Nd separation) and high sensitivity (TIMS on NdO+ ion beam), is able to process rapidly (3–4 h), with low procedure blanks (<10 pg) and very small sample (1–3 mg). Replicate measurements by TIMS on 143Nd/144Nd ratios and Sm–Nd concentrations are presented for eleven international silicate rock reference materials, spanning a wide range of Sm–Nd contents and bulk compositions. The analytical results show a good agreement with recommended values within ±0.004% for the 143Nd/144Nd isotopic ratio and ±2% for Sm–Nd quantification at the 95% confidence level. It is noted that the uncertainty of this method is about 3 times larger than typical precision achievable with two-stage full separation followed by state-of-the-art conventional TIMS using Nd+ ion beams which require much larger amounts of Nd. Hence, our single-step separation followed by NdO+ ion beam technique is preferred to the analysis for microsamples.  相似文献   

11.
12.
13.
14.
Stable isotope analysis of organic materials for their hydrogen ((2)H), carbon ((13)C), nitrogen ((15)N) or oxygen ((18)O) isotopic composition using continuous flow isotope ratio mass spectrometry (CF-IRMS) is an increasingly used tool in forensic chemical analysis. (2)H isotopic analysis can present a huge challenge, especially when dealing with exhibits comprising exchangeable hydrogen such as human scalp hair. However, to yield forensic data that are fit for purpose, analysis of the (2)H isotopic composition of the same homogeneous human hair sample by any laboratory worldwide must yield the same isotopic composition within analytical uncertainty. This paper presents longitudinal (2)H isotope data for four human hair samples of different provenance, measured by three different laboratories whose sample preparation was based on a two-stage H exchange equilibration method. Although each laboratory employed varying means to comply with the generic features of the sample preparation protocol such as the (2)H isotopic composition of exchange waters or drying down of samples prior to analysis, within each laboratory the Principle of Identical Treatment (P.I.T.) was applied for each individual experiment. Despite the variation in materials and procedures employed by the three laboratories, repeatable and reproducible 'true' (2)H isotope values (δ(2)H(hair,true)) were determined by each laboratory for each of the four stock samples of human scalp hair. The between-laboratory differences for obtained δ(2)H(hair,true) values ranged from 0.1 to 2.5 ‰. With an overall 95% confidence interval of ±2.8 ‰, these differences were not significantly different, which suggests that the general method of two-stage exchange equilibration carried out at ambient temperature is suitable for accurately and reproducibly determining 'true' δ(2)H-values for hair and other proteins provided that certain key conditions are met.  相似文献   

15.
Hydrogenases catalyze the reversible formation of H(2), and they are key enzymes in the biological cycling of H(2). H isotopes have the potential to be a very useful tool in quantifying hydrogen ion trafficking in biological H(2) production processes, but there are several obstacles that have thus far limited the application of this tool. Here, we describe a new method that overcomes some of these barriers and is specifically designed to measure isotopic fractionation during enzyme-catalyzed H(2) evolution. A key feature of this technique is that purified hydrogenases are employed, allowing precise control over the reaction conditions and therefore a high level of precision. In addition, a custom-designed high-throughput gas chromatograph/isotope ratio mass spectrometer is employed to measure the isotope ratio of the H(2). Using our new approach, we determined that the fractionation factor for H(2) production by the [NiFe]-hydrogenase from Desulfovibrio fructosovorans is 0.273 ± 0.006. This result indicates that, as expected, protons are highly favored over deuterium ions during H(2) evolution. Potential applications of this newly developed method are discussed.  相似文献   

16.
Measurements of carbon and oxygen isotopes of CO2 by continuous flow isotope ratio mass spectrometry are widely used in environmental studies and climate change research. Yet, there are remaining problems associated with the reproducibility of measurements, in particular when high precision is required and/or the amount of sample material is limited. Isotopic fractionations in open splits and nonlinear effects occurring in the mass spectrometer due to different sample amounts alter the results. In this study, we discuss the influence and the origin of these two effects and propose procedures for preventing their impact. Fractionation in the open split can be related to diffusion of CO2 and can lead to shifted δ‐values when measuring a sample gas against a reference gas injected via different open splits. We present a method, where such fractionations can be minimized by adjusting either the position of the capillaries or the flow rates involved or both. The nonlinear peak area dependence of δ13C measurements for small sample sizes can be explained by adsorption/desorption processes in the ionization chamber or its vicinity. For constant amplitudes, the magnitude of the nonlinearity only depends on the amount of CO2 entering the ion source. This nonlinearity can be eliminated by a small additional flux of a conditioning gas fed to the mass spectrometer. The best results were obtained when using carbon monoxide. For the adsorption process in the mass spectrometer we found a fractionation factor of 0.982 ± 0.005 for δ13C and 1.002 ± 0.004 for δ18O. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A new method has been developed to analyse 15N of the total dissolved nitrogen (TDN) pool. The method operates on a commercial total organic carbon (TOC) analyser coupled to an elemental analyser/isotope ratio mass spectrometer (EA-IRMS). Nitrogen compounds are combusted to nitric oxide (NO) and nitrogen dioxide (NO2) by high-temperature catalytic oxidation (HTCO), after which the NOx gas is transferred to an EA-IRMS for isotopic nitrogen analysis. The system is described, including five modifications of the system in order to overcome analytical problems. First, flow paths were modified to run both systems on helium as carrier gas, while complete sample oxidation was maintained. Secondly, the catalyst structure was adapted to allow high injection volumes at the given backpressures delivered by the EA system. Thirdly, we installed a Permapure dehumidification system as the standard Peltier element did not satisfy dehumidification requirements. Finally, we prevented the inflow of atmospheric nitrogen into the system. In a final stage, we are planning to automate the coupled system in order to run a continuous batch of up to 60 samples. We have obtained satisfactory results on the accuracy and precision of 180+/-1 per thousand potassium nitrate samples (IAEA, USGS-32). Running a batch of five samples resulted in a mean isotopic value of 178.8 per thousand with a standard deviation of 2.8 per thousand. Some important issues could not yet be addressed here, and will have to be evaluated once the system is running on a continuous base. However, the results appear promising and this system has the potential to become a method for TD15N analysis. An appropriate TD15N analysis method might open new challenges in aquatic and terrestrial ecosystem nitrogen studies, including a more comprehensive study of the dissolved organic nitrogen pool.  相似文献   

18.
Liquid chromatography–tandem mass spectrometry has become the preferred technology to measure unconjugated metanephrine and normetanephrine in plasma because of its high sensitivity and specificity over immunoassay and gas chromatography–mass spectrometry. In our earlier study, plasma metanephrines were extracted with offline ion-pairing solid-phase extraction and quantified by liquid chromatography–tandem mass spectrometry with porous graphitic carbon column based chromatography. In this study, we aim to automate the sample preparation with turbulent flow online extraction technology and maintain or improve the analytical performance previously achieved from the offline approach. The online extraction was done with a mixed-mode cation exchange turbulent flow chromatography column assisted with ion-pairing reagent and porous graphitic column was used for chromatographic separation. The total online extraction and analytical LC runtime was 12 min. This method was linear from 6.3 to 455.4 pg/mL for metanephrine; 12.6 to 954.5 pg/mL for normetanephrine with an accuracy of 80.6% to 93.5% and 80.9% to 101.7%, respectively. The lower limit of quantitation was 6.3 pg/mL for metanephrine and 12.6 pg/mL for normetanephrine. Inter-assay and intra-assay precision for metanephrine and normetanephrine at low and high concentration levels ranged from 2.0% to 10.5%. In conclusion, we have developed a fast and sensitive automated online turbulent flow extraction method for the quantitative analysis of plasma metanephrines. Ion-pairing reagent was necessary for the success of this method.  相似文献   

19.
On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration.Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号