首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a new facile strategy for quickly synthesizing pH sensitive poly(VI‐co‐HEA) hydrogels (VI = N‐vinylimidazole; HEA = 2‐hydroxyethyl acrylate) by frontal polymerization. The appropriate amounts of VI, HEA, and ammonium persulfate (APS)/N,N,N′,N′‐tetramethylethylenediamine (TMEDA) couple redox initiator were mixed together at ambient temperature in the presence of glycerol as the solvent medium. Frontal polymerization (FP) was initiated by heating the upper side of the mixture with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the VI/HEA weight ratios were investigated. The pH sensitive behavior, morphology, and heavy metal removal study of poly(VI‐co‐HEA) hydrogels prepared via FP were comparatively investigated on the basis of swelling measurements, scanning electron microscopy, and inductively coupling plasma spectrometer. Results show that the poly(VI‐co‐HEA) hydrogels prepared via FP exhibit good pH sensitivity and adsorption capacity. The FP can be exploited as an alternative means for synthesis of pH sensitive hydrogels in a fast and efficient way. The as‐prepared hydrogels can be applied to remove heavy metals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4005–4012, 2010  相似文献   

2.
We report the first synthesis of poly(hydroxyethyl acrylate) (PHEA) without solvent by free‐radical frontal polymerization (FP) at ambient pressure. In a typical run, the appropriate amounts of reactant (hydroxyethyl acrylate) and initiator (1,1‐di(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane) (Luperox 231) were mixed together at ambient pressure. FP was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. To study the macrokinetics, we also produced PHEA frontally with ammonium persulfate as initiator and dimethyl sulfoxide as the solvent. The dependences of the front velocity and front temperature on the initiator concentration and reactant dilution were investigated. The front temperatures were between 124 and 157 °C, depending on the ammonium persulfate concentration. Thermogravimetric analysis indicates that PHEA prepared by FP with ammonium persulfate as initiator had higher thermal stability than solvent‐free frontally prepared PHEA with Luperox 231 as initiator. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 873–881, 2007  相似文献   

3.
Atmospheric air plasma was created and applied in the frontal polymerization (FP) of fabricating poly(HPA‐co‐VeoVa 10) amphiphilic gels (HPA = 2‐hydroxypropyl acrylate, VeoVa 10 = vinyl versatate) with enhanced physicochemical properties. In plasma‐ignited frontal polymerization (PIFP), once ignited by air plasma, no further energy or treatment was required for the following polymerization. In this system, the comparison between PIFP and thermal frontal polymerization (TFP) was conducted and observed that PIFP and TFP differ considerably in terms of swelling capacity, morphology and component distribution of the products. This finding is of great importance that the simultaneous generation of active radicals in the initial stage can spread throughout reactant and anchor on the synthetic polymer with the assistance of FP. More interestingly, the PIFP‐synthesized copolymer possesses remarkable selective absorption towards organic solvents, which can be facilely manipulated by varying the weight ratios of HPA/VeoVa 10. Obviously, these polymer products could serve as an “organic solvent scavenger” in the field of industrial wastewater treatment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
We report the first synthesis of urethane–acrylate copolymers via free‐radical frontal polymerization. In a typical run, the appropriate amounts of the reactants (urethane–acrylate macromonomer and 2‐hydroxyethyl acrylate) and initiator (ammonium persulfate) were dissolved in dimethyl sulfoxide. Frontal polymerization was initiated by the heating of the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once it was initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the initiator concentration was investigated. The front temperatures were between 55 and 65 °C, depending on the persulfate concentration. Thermogravimetric analysis indicated that the urethane–acrylate copolymers had higher thermal stability than pure frontally prepared polyurethane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3018–3024, 2006  相似文献   

5.
A series of the self‐healing gels facilely fabricated by VI (N‐vinyl imidazole) and MAH‐β‐CD (β‐cyclodextrin grafted vinyl carboxylic acid groups) via bottom‐ignited frontal polymerization (BIFP) initiated by magnetocaloric effect. Once ignited the bottom phase, the heat upward propagates to generate the “front” in the upper phase. Then, no further energy is added to maintain the reaction and the whole polymerization process experiences within minutes. In this system, the dependence of frontal velocity and temperature, along with morphology, swelling capacity, mechanical property, and self‐healing efficiency, on the preparation parameters is investigated. Interestingly, the gels show good swelling capacity in the organic solvent, comparatively almost no absorption in water. Moreover, the as‐prepared gels exhibit excellent auto‐healing properties without any external stimuli at ambient temperature. The healed sample possesses 97% recovery of its tensile strength after 8 h healing time, which relies largely on the host–guest interaction between VI and MAH‐β‐CD. The results demonstrate that FP can be utilized as an efficient and energy‐saving method to synthesize self‐healing supramolecular gels. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2585–2593  相似文献   

6.
In this work, a dually sensitive colloidal crystal (CC)‐loaded hydrogel has been synthesized via frontal polymerization (FP) in a facile and rapid way. First, a polystyrene CC film was fabricated by vertical deposition on the inner wall of a test tube. Then, a mixture of acrylic acid (AAc), 2‐hydroxyethyl methacrylate (HEMA), and glycerol along with the initiator and crosslinker was added to this test tube to carry out FP, resulting in the formation of CC‐loaded hydrogel. The influence of the mass ratios of HEMA/AAc on front velocity and temperatures were studied. The swelling behavior, the morphology, and the stimuli‐responsive behavior of the CC‐loaded hydrogels prepared via FP were thoroughly investigated on the basis of swelling measurement, scanning electron microscopy, and reflection spectra. Results show that the as‐prepared CC‐loaded hydrogels exhibit excellent dual sensitivity to both methanol concentrations and pH values with very short response time, which can be observed visually without the aid of instruments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
3‐Hydroxypropyl acrylate, 4‐hydroxybutyl acrylate, 2‐methyl‐3‐hydroxypropyl acrylate, 2‐hydroxypropyl acrylate, neopentyl glycol acrylate, glyceryl acrylate, and dihydroxyhexyl acrylate were prepared via transacylation reaction of methyl acrylate with diols and triols catalyzed by Candida antarctica lipase B. After removal of the enzyme by filtration and the methyl acrylate by distillation, the monomers were polymerized via free radical polymerization (FRP) with azobisisobutyronitrile as initiator and nitroxide mediated polymerization (NMP) employing Blocbuilder? alkoxyamine initiator and SG‐1 free nitroxide resulting in hydroxy functional poly(acrylates). The NMP kinetics are discussed in detail. In addition, the polymers obtained by FRP and NMP are compared and the results are related to the amount of bisacrylates that are present in the initial monomer mixtures resulting from the transacylation reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2610–2621, 2010  相似文献   

8.
In this work, we report on the synthesis and characterization of homopolymers and copolymers of acrylic acid and 2‐hydroxyethyl acrylate prepared by the use of the frontal polymerization (FP) technique. Tetraethyleneglycoldiacrylate was used as a crosslinker and benzoyl peroxide as an initiator. The maximum temperatures reached by the front were in the range between 214 °C and 296 °C. Besides, front velocities ranged between 3.9 and 10.8 cm/min, the latter being one of the highest values reported so far in the FP literature. Differential scanning calorimetry was used to estimate the conversion degree, which was always comprised between 90% and 96%, and to determine the glass transition temperatures, which were found to be dependent on the composition, with values ranging from 13 °C to 168 °C. Moreover, the obtained materials were allowed to swell in aqueous solutions at various pH. The samples exhibit a moderate increase of the swelling ratio percentage (SR%) at pH ≈ 5–6, and a sudden and larger SR% increase at pH ≈ 12–13 depending on the composition, thus indicating the obtainment of pH‐responsive polymer hydrogels. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The first synthesis of poly(N‐vinylpyrrolidone) without solvent by free‐radical frontal polymerization at ambient pressure is reported. The appropriate amounts of two reactants N‐vinyl‐2‐pyrrolidone (NVP) and initiator 2,2′‐azobis‐isobutyronitrile (AIBN) without solvent were mixed together at ambient temperature. Frontal polymerization was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. To suppress the fingers of molten monomer, a small amount of nanosilica was added. The dependence of the front velocity and front temperature on the AIBN concentration was thoroughly investigated. The as‐prepared polymers were characterized by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). Results show that without postpolymerization solvent removal, waste production can be reduced. Solvent‐free FP could be exploited as a means for preparation of PVP with the potential advantage of higher throughput than solvent‐based methods. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2177–2185, 2008  相似文献   

10.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2‐ethylhexyl ether acrylate (DEHEA), a commercially‐available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2‐propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well‐defined ABA triblock copolymers consisting of poly(tert‐butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007  相似文献   

11.
This work deals with the preparation of poly(urethane acrylates) by using two different polymerization techniques. Namely, the classical batch procedure has been compared with frontal polymerization (FP). A thorough study on the effect of initiator type, concentration, and on the velocity of the front and its maximum temperature has been carried out. Moreover, two different synthetic ways have been studied: the one step poly(urethane acrylate) preparation starting directly from 1,6 diisocyanato hexane and 2‐hydroxyethyl acrylate, and the two step procedure consisting of the synthesis of the corresponding diurethane diacrylate and of its subsequent polymerization. The first method has the advantage of being faster but some caution is necessary due to the excessive heat that is generated if the reaction conditions are not properly chosen. The second approach requires a further step but has the advantage of being more controlled. DSC analysis did not show any significant difference by comparing the thermal properties of the materials obtained by the two techniques (batch and FP). However, since FP runs are very easy and fast to be performed, FP should be seriously taken into proper account when these materials have to be prepared. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3344–3352, 2008  相似文献   

12.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

13.
N‐vinyl‐2‐pyrrolidone (VP) and 2‐hydroxyethyl methacrylate (HEMA) copolymeric gels have been synthesized using UV‐initiated photopolymerization to understand their characteristic behavior for development as a bioengineering material, specifically for tissue expansion. The properties of the gels have been investigated by systematic variation of the monomer feed composition and initiator and crosslinker concentrations as well as UV irradiation intensity, which was controlled by various photomasks. The swelling kinetics and network characteristics for the various hydrogels were investigated through the observation of gel swelling behavior in saline solutions and compression modulus determination of the fully swollen hydrogels. The equilibrium swelling ratio (qe) of the gels increased as expected with increasing VP content and decreasing crosslinker concentration. However, it was found that as the amount of initiator or UV intensity increased, unexpectedly qe also increased, which indicates a network structure with decreasing effective crosslink density (νe) (or increasing average molecular weight between crosslinks (Mc)). Based on this anomalous swelling behavior and thermal analysis of the gels, a molecular structure is proposed consisting of increasing number of dangling chain ends within the polymer network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1450–1462, 2008  相似文献   

14.
This article describes a divergent strategy to prepare dendrimer‐like macromolecules from vinyl monomers through a combination of atom transfer radical polymerization (ATRP) and click reaction. Firstly, star‐shaped polystyrene (PS) with three arms was prepared through ATRP of styrene starting from a three‐arm initiator. Next, the terminal bromides of the star‐shaped PS were substituted with azido groups. Afterwards, the azido‐terminated star‐shaped PS was reacted with propargyl 2,2‐bis((2′‐bromo‐2′‐methylpropanoyloxy)methyl)propionate (PBMP) via click reaction. Star‐shaped PS with six terminal bromide groups was afforded and served as the initiator for the polymerization of styrene to afford the second‐generation dendrimer‐like PS. Iterative process of the aforementioned sequence of reactions could allow the preparation of the third‐generation dendrimer‐like PS. When the second‐generation dendrimer‐like PS with 12 bromide groups used as an initiator for the polymerization of tert‐butyl acrylate, the third‐generation dendrimer‐like block copolymer with a PS core and a poly (tert‐butyl acrylate) (PtBA) corona was afforded. Subsequently PtBA segments were selectively hydrolyzed with hydrochloric acid, resulting an amphiphilic branched copolymer with inner dendritic PS and outer linear poly(acrylic acid) (PAA). Following the same polymerization procedures, the dendrimer‐like PS and PS‐block‐PtBA copolymers of second generation originating from six‐arm initiator were also synthesized. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3330–3341, 2007  相似文献   

15.
We describe a facile fabrication of white light‐emitting cadmium sulfide (CdS)‐poly(HEA‐co‐NVK) nanocomposites [2‐hydroxyethyl acrylate (HEA) and N‐vinylcarbazole (NVK)] via plasma‐ignited frontal polymerization (PIFP), a novel and rapid reaction mode of converting monomers into polymers in minutes. Frontal polymerization was initiated by igniting the upper side of the reactant with plasma. Once initiated, no additional energy was required for the polymerization to occur. The chemical functional groups of the as‐prepared nanocomposites were thoroughly investigated using Fourier transform infrared spectra. The dependence of the front velocity and front temperature on the initiator concentration and weight ratios of HEA/NVK was also investigated in detail. Perhaps more interestingly, the white light‐emitting materials synthesized by ingeniously incorporating the compensating colors of yellow emitting from 3‐(trimethoxysilyl)‐1‐propanethiol‐capped CdS nanocrystals and blue emitting from carbazole‐containing polymer were conveniently applied onto a commercial UV light‐emitting diode (LED) to generate white LEDs. The subtle change in the weight ratios of CdS/NVK can significantly impact the color hue. The white light becomes gradually colder with the increase of NVK, but becomes gradually warmer with the increase concentration of CdS nanocrystals. In a broad perspective, these white light‐emitting materials designed by PIFP approach will open a new pathway to develop “QD‐polymer nanocomposite down‐conversion LED” in a fast and efficient way. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We report the first synthesis of poly (N‐methylolacrylamide) (PNMA) via free‐radical frontal polymerization (FP) with solid monomers at ambient pressure. The appropriate amounts of reactants (N‐methylolacrylamide) (NMA) and initiator (ammonium persulfate) were mixed together at ambient temperature without solvent. FP was initiated by heating the wall of the tube with a soldering iron, and the resultant hot fronts were allowed to self‐propagate throughout the reaction vessel. Once initiated, no further energy was required for polymerization to occur. To suppress the fingers of molten monomer, a small amount of nanosilica was added. We also produced PNMA with dimethyl sulfoxide (DMSO) or N‐methyl‐2‐pyrrolidone, as solvent by FP, to study the macrokinetics in FP of PNMA without fillers. The front velocity and front temperature dependence on the ammonium persulfate and N‐methyl‐2‐pyrrolidone concentration were investigated. The polymer was analyzed by thermogravimetric analysis. Results show that without postpolymerization solvent removal, waste production can be reduced. Solvent‐free FP could be exploited as a means for preparation of PNMA with the potential advantage of higher throughput than solvent‐based methods. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4322–4330, 2007  相似文献   

17.
Tandem atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) were used to synthesize a polystyrene‐co‐poly(acrylic acid) (poly(St‐co‐AA)) network, in which the two components were interconnected by covalent bond. First, a specific cross‐linker, 1,4‐bis(1′‐(4″‐acryloyloxy‐2″,2″,6″,6″‐tetramethylpiperidinyloxy)ethyl)benzene (di‐AET), a bifunctional alkoxyamine possessing two acrylate groups, was copolymerized with tert‐butyl acrylate through ATRP to prepare a precursor gel. The gel was then used to initiate the NMRP of styrene to prepare poly(St‐co‐(t‐BA)) conetwork, in which the cross‐linkages are composed of polystyrene segments. Finally, the poly(St‐co‐(t‐BA)) conetwork was hydrolyzed to produce amphiphilic poly(St‐co‐AA) conetwork. The resulting gels show swelling ability in both organic solvent and water, which is characteristic of amphiphilic conetworks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4141–4149, 2010  相似文献   

18.
A series of amphiphilic conetworks (APCNs) is synthesized through crosslinking of well‐defined tri‐arm star diblock copolymers via atom transfer radical polymerization. A new three‐arm initiator is synthesized to initiate the polymerization of 2‐hydroxyethyl methacrylate (HEMA) via “core‐first” method. The resulting star HEMA homopolymers with well‐defined molecular weight and narrow polydispersity are used as macroinitiator to incorporate allyl methacrylate to get the star diblock copolymers. Then, the precursors with allyl pendant groups are fully crosslinked with polyhydrosiloxanes through hydrosilylation. The so‐prepared APCNs exhibit unique properties of microphase separation of hydrophilic (HI) and hydrophobic (HO) phases with small channel size, a variable swelling capacity, excellent biocompatibility, and outstanding mechanical strength (2 ± 0.5 MPa). The properties of APCNs depend on the ratio of HI to HO, which can be regulated via precise synthesis of the star diblock copolymers. The APCNs show well‐controlled drug release to choline theophyllinate, suggesting a promising intelligent drug carrier for controlled release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2537–2545  相似文献   

19.
In this work, semi‐interpenetrating gels of poly(N‐isopropyl acrylamide) and methylcellulose were successfully synthesized by using the Frontal Polymerization (FP) technique. The gels were obtained in the presence of dimethyl sulfoxide and trihexyltetradecylphosphonium persulfate, as polymerization solvent and radical initiator, respectively, hence avoiding the formation of bubbles during polymerization. Then, some of the gels containing dimethyl sulfoxide were thoroughly washed with water, hence obtaining the corresponding hydrogels. The effects of the ratio between poly(N‐isopropyl acrylamide) and methylcellulose, the amount of crosslinker and solvent medium (i.e., dimethyl sulfoxide and water) were thoroughly studied, assessing the influence of temperature and velocity of FP fronts on the glass transition temperature values (dried samples), on the swelling behavior and on the dynamic‐mechanical properties (gels swollen both in water and dimethyl sulfoxide). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 437–443  相似文献   

20.
We demonstrated that density functional theory calculations provide a reliable and quantitative prediction of the trends in C? S bond dissociation energies using several model compounds as photoinitiator. On the basis of this information, we designed a possible photofunctional initiator for the polymerization of hydrophilic vinyl monomers. Photopolymerization of 2‐hydroxyethyl methacrylate (HEMA) hydrophilic monomer was carried out in ethanol initiated by 2‐(N,N‐diethyldithiocarbamyl)isobutyric acid (DTCA) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated first order in monomer. The molecular weight of the poly(2‐hydroxyethyl methacrylate) (PHEMA) increased with increasing conversion. The molecular weight distribution (Mw/Mn) of the PHEMA was about 1.5. Methyl methacrylate (MMA) could also be polymerized in a living fashion with such a PHEMA precursor as a macroinitiator because PHEMA exhibited a dithiocarbamate (DC) group at its terminal end. This system could be applied to the architecture of amphiphilic block copolymers. It was concluded that these polymerization systems proceeded with controlled radical mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 76–82, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号