共查询到20条相似文献,搜索用时 15 毫秒
1.
Ying‐Yun Long Yong‐Xia Wang Jing‐Yu Liu Xiao‐Fang Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2011,49(21):4626-4638
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐tBu‐2‐OC6H3CH?N(C6F5)] [PhN?C(CF3)CHCRO]TiCl2 [ 3a : R = Ph, 3b : R = C6H4Cl(p), 3c : R = C6H4OMe(p), 3d : R = C6H4Me(p), 3e : R = C6H4Me(o)] were synthesized and characterized. Molecular structures of 3b and 3c were further confirmed by X‐ray crystallographic analyses. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts displayed favorable ability to incorporate 5‐vinyl‐2‐norbornene (VNB) and 5‐ethylidene‐2‐norbornene (ENB) into the polymer chains, affording high‐molecular weight copolymers with high‐comonomer incorporations and alternating sequence under the mild conditions. The comonomer concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resultant copolymer. At initial comonomer concentration of higher than 0.4 mol/L, the titanium complexes with electron‐donating groups in the β‐enaminoketonato moiety mediated room‐temperature living ethylene/VNB or ENB copolymerizations. Polymerization results coupled with density functional theory calculations suggested that the highly controlled living copolymerization is probably a consequence of the difficulty in chain transfer of VNB (or ENB)‐last‐inserted species and some characteristics of living ethylene polymerization under limited conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
2.
Li‐Ming Tang Ji‐Qian Wu Yi‐Qun Duan Li Pan Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2038-2048
Five novel vanadium(III) complexes [PhN = C(R2)CHC(R1)O]VCl2(THF)2 ( 4a : R1 = Ph, R2 = CF3; 4b : R1 = t‐Bu, R2 = CF3; 4c : R1 = CF3, R2 = CH3; 4d : R1 = Ph, R2 = CH3; 4e : R1 = Ph, R2 = H) have been synthesized and characterized. On activation with Et2AlCl, all the complexes, in the presence of ethyl trichloroacetate (ETA) as a promoter, are highly active precatalysts for ethylene polymerization, and produce high molecular weight and linear polymers. Catalyst activities more than 16.8 kg PE/mmolV h bar and weight‐average molecular weights higher than 173 kg/mol were observed under mild conditions. The copolymerizations of ethylene and norbornene or 1‐hexene with the precatalysts were also explored, which leads to high molecular weight copolymers with high comonomer incorporation. Catalyst activity, comonomer incorporation, and polymer molecular weight as well as polydispersity index can be controlled over a wide range by the variation of precatalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2038–2048, 2008 相似文献
3.
Sen‐Wang Zhang Gui‐Bao Zhang Ling‐Pan Lu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(4):844-854
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
4.
Li‐Peng He Hong‐Liang Mu Bai‐Xiang Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2010,48(2):311-319
Novel chromium catalysts based on bidentate phenoxy‐phosphinoyl (HO‐2R1‐4R2‐6(Ph2P?O)C6H2: R1 = R2 = H, 3a ; R1 = tBu, R2 = H, 3b ; R1 = R2 = tBu, 3c ; R1 = R2 = cumyl, 3d ; R1 = anthracenyl, R2 = H, 3e ) and thiophenol‐phosphine (HS‐2R1‐4R2‐6(Ph2P)C6H2: R1 = R2 = H, 4a ; R1 = SiMe3, R2 = H, 4b ) were prepared and characterized. Treatment with modified methyaluminoxane, these catalysts displayed moderate to high‐catalytic activities for ethylene polymerization. The activities of them were higher than those of the corresponding catalysts based on bidentate phenoxy‐phosphine ligands. Both the coordinated donors and the ortho‐substituent of the ligands played an important role in improving catalytic activity. The effects of reaction parameters, such as cocatalyst and Al/Cr molar ratio as well as reaction temperature, on ethylene polymerization behaviors were investigated in detail for two favorable catalytic systems, 3b /CrCl3(thf)3 and 4b /CrCl3(thf)3. Catalyst 4b /CrCl3(thf)3 displayed higher catalytic activity and better temperature tolerance for ethylene polymerization than 3b /CrCl3(thf)3. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 311–319, 2010 相似文献
5.
Toru Wada Toshiaki Taniike Iku Kouzai Shougo Takahashi Minoru Terano 《Macromolecular rapid communications》2009,30(11):887-891
In propylene polymerization with MgCl2‐supported Ziegler‐Natta catalysts, it is known that the reduction of TiCl4 with alkylaluminum generates Ti3+ active species, and at the same time, leads to the growth of TiClx aggregates. In this study, the aggregation states of the Ti species were controlled by altering the Ti content in a TiCl3/MgCl2 model catalyst prepared from a TiCl3 · 3C5H5N complex. It is discovered that all the Ti species become isolated mononuclear with a highly aspecific feature below 0.1 wt.‐% of the Ti content, and that the isolated aspecific Ti species are more efficiently converted into highly isospecific ones by the addition of donors than active sites in aggregated Ti species.
6.
Li‐Peng He Jing‐Yu Liu Li Pan Ji‐Qian Wu Bao‐Chang Xu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(3):713-721
A series of amino‐pyrrolide ligands ( 1–4a ) and their derivatives amino‐thiophene ligand ( 5a ), amino‐indole ligand ( 6a ) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)3 in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino‐pyrrolide ligands containing soft pendant donor, 3a, 4a /CrCl3(thf)3 systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)3 with one equivalent of the lithium salts of 4a , which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax‐like and possess linear structure, low molecular weight, and unimodal distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 713–721, 2009 相似文献
7.
Ji‐Qian Wu Jing‐Shan Mu Sen‐Wang Zhang Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2010,48(5):1122-1132
A series of vanadium(V) complexes bearing tetradentate amine trihydroxy ligands [NOOO], which differ in the steric and electronic properties, have been synthesized and characterized. Single crystal X‐ray analysis showed that these complexes are five or six coordinated around the vanadium center in the solid state. Their coordination geometries are octahedral or trigonal bipyramidal. In the presence of Et2AlCl, these complexes have been investigated as the efficient catalysts for ethylene polymerization and ethylene/norbornene copolymerization at elevated reaction temperature and produced the polymers with unimodal molecular weight distributions (MWDs), indicating the single site behaviors of these catalysts. Both the steric hindrance and electronic effect of the groups on the tetradentate ligands directly influenced catalytic activity and the molecular weights of the resultant (co)polymers. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, ethylene pressure, and comonomer concentration, are also examined in detail. Furthermore, high catalytic activities of up to 3.30 kg polymer/mmolV·h were also observed when these complexes were applied to catalyze the copolymerization of ethylene and 5‐norbornene‐2‐methanol, producing the high‐molecular‐weight copolymers (Mw = 157–400 kg/mol) with unimodal MWDs (Mw/Mn = 2.5–3.0) and high polar comonomer incorporations (up to 12.3 mol %). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1122–1132, 2010 相似文献
8.
Jing‐Shan Mu Xin‐Cui Shi Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2011,49(12):2700-2708
Iminopyrrolyl vanadium(III) complexes 2a–b bearing tridentate ligands [C4H3NCH?NC6H4L]VCl2(THF) [L = 2‐P(C6H5)2 ( 2a ), 2‐SMe ( 2b )] and complexes 2c–d with tetradentate ligands [(C4H3NCH?N)2R]VCl(THF) [R = 1,2‐C6H4 ( 2c ), 1,2‐C2H4 ( 2d )] have been synthesized in high yields. With diethylaluminium chloride as a cocatalyst, complexes 2a–d were investigated as efficient catalysts for ethylene polymerization under various reaction conditions, and exhibited high catalytic activity and remarkable thermal stability. With these complexes, high molecular weight polymers with unimodal molecular weight distributions were obtained, indicating that the polymerization reaction took place in a single‐site nature. Ethylene/1‐hexene copolymerizations were also investigated in the presence of Et2AlCl. Both increasing ligand denticity and introducing softer atom into the sidearm of the ligands significantly influenced catalytic activity, comonomer incorporation, and the molecular weights of the resultant polymers, suggesting that both the steric and the electronic effects of the ligands played an important role in adjusting chain propagation and transfer rate. The chain transfer mechanisms involved in the copolymerization process were investigated by carefully analyzing the microstructure of the copolymers. The signals of vinyl, disubstituted and tri‐substituted vinylene double bond end groups were detected in the copolymer obtained by 2a /Et2AlCl system but not in those by 2b–c /Et2AlCl systems, indicating that bulky electron‐donating group, ? P(C6H5)2, may lead to those unusual transfer reactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
9.
Miao Hong Guo‐Fan Yang Ying‐Yun Long Shijun Yu Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(15):3144-3152
A series of novel cyclic olefin copolymers (COCs), including ethylene/tricyclo[4.3.0.12,5]deca‐3‐ene (TDE), ethylene/tricyclo[4.4.0.12,5]undec‐3‐ene (TUE), and ethylene/tricyclo[6.4.0.19,12]tridec‐10‐ene (TTE) copolymers, have been synthesized via effective copolymerizations of ethylene with bulk cyclic olefin comonomers using bis(β‐enaminoketonato) titanium catalysts ( 1a [PhN?C(CH3)CHC(CF3)O]2TiCl2; 1b : [PhN?C(CF3)CHC(Ph)O]2TiCl2). With modified methylaluminoxane as a cocatalyst, both catalysts exhibit high catalytic activities, producing high molecular weight copolymers with high comonomer incorporations and unimodal molecular weight distributions. The microstructures of obtained ethylene/COCs are established by combination of 1H, 13C NMR, 13C DEPT, HSQC 1H? 13C, and 1H? 1H COSY NMR spectra. DSC analyses indicate that the glass transition temperature (Tg) increases with the enhancement of comonomer volume (TDE < TUE < TTE). High Tg value up to 180 °C is easily attained in ethylene/TTE copolymer with the low content of 35.8 mol %. TGA analyses reveal that these copolymers all possess high thermal stability with degradation temperatures (Td) higher than 370 °C in N2 and air. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3144–3152 相似文献
10.
Li‐Ming Tang Yan‐Guo Li Wei‐Ping Ye Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5846-5854
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006 相似文献
11.
Sen‐Wang Zhang Ling‐Pan Lu Ying‐Yun Long Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2013,51(24):5298-5306
A series of novel vanadium(III) complexes bearing bidentate phenoxy‐phosphine oxide [O,P=O] ligands, (2‐R1‐4‐R2‐6‐Ph2P=O‐C6H2O)VCl2(THF)2 ( 2a : R1 = R2 = H; 2b : R1 = F, R2 = H; 2c : R1 = tBu, R2 = H; 2d : R1 = Ph, R2 = H; 2e : R1 = R2 = Me; 2f : R1 = R2 = tBu; 2g : R1 = R2 = CMe2Ph) have been synthesized by adding 1 equiv of the ligand to VCl3(THF)3 dropwise in the presence of excess triethylamine. Under the same conditions, the adding of VCl3(THF)3 to 2.0 equiv of the ligand afforded vanadium(III) complexes bearing two [O,P=O] ligands ( 3c , 3f ). All the complexes were characterized by FTIR and mass spectra as well as elemental analysis. Structures of complexes 2c and 3c were further confirmed by X‐ray crystallographic analysis. On activation with Et2AlCl and ethyl trichloroacetate, these complexes displayed high catalytic activities for ethylene polymerization (up to 26.4 kg PE/mmolV·h·bar) even at high reaction temperature (70 °C) indicative of high thermal stability, and produced high molecular weight polymers with unimodal molecular weight distributions. Additionally, the complexes with optimized structure exhibited high catalytic activities for ethylene/1‐hexene copolymerization. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled in a wide range via the variation of catalyst structure and the reaction parameters such as Al/V molar ratio, comonomer feed concentration, and reaction temperature. The monomer reactivity ratios rE and rH were determined according to 13C NMR spectra, which indicated these complexes preferred ethylene to 1‐hexene in the copolymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5298–5306 相似文献
12.
Ji‐Qian Wu Bai‐Xiang Li Sen‐Wang Zhang Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2010,48(14):3062-3072
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010 相似文献
13.
Li‐Ming Tang Tao Hu Li Pan Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6323-6330
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005 相似文献
14.
Marzena Białek Monika Pochwała Grzegorz Spaleniak 《Journal of polymer science. Part A, Polymer chemistry》2014,52(15):2111-2123
A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′‐(OC6H3‐5‐t‐Bu)2‐NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′‐(OC6H2‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [ M{2,2′‐(OC6H3‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1‐octene polymerization after activation by MAO and/or Al(i‐Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures and it improves for the increasing length of the aliphatic linkage between nitrogen atoms (Lig1TiCl2 << Lig2TiCl2 < Lig3TiCl2) and declines after adding additional tert‐Bu group on the aromatic rings (Lig3TiCl2 < Lig4TiCl2). The activity of all titanium complexes in ethylene polymerization was moderate and the properties of polyethylene was dependent on the ligand structure, cocatalyst type, and reaction conditions. The Et2AlCl‐activated complexes gave polymers with lover molecular weights and bimodal distribution, whereas ultra‐high molecular weight PE (up to 3588 kg mol?1) and narrow MWD was formed for MAO as a cocatalyst. Vanadium complex yielded PE with the highest productivity (1925.3 kg molv?1), with high molecular weight (1986 kg mol?1) and with very narrow molecular weight distribution (1.5). Copolymerization tests showed that titanium complexes yielded ethylene/1‐octene copolymers, whereas vanadium catalysts produced product mixtures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2111–2123 相似文献
15.
Ji‐Qian Wu Li Pan San‐Rong Liu Li‐Peng He Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(14):3573-3582
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009 相似文献
16.
Tariqul Hasan Tomiki Ikeda Takeshi Shiono 《Journal of polymer science. Part A, Polymer chemistry》2007,45(20):4581-4587
(t‐BuNSiMe2Flu)TiMe2 ( 1 ) activated with Me3Al‐free methylaluminoxane (dried MAO) which conducts vinyl addition polymerization of norbornene (N) with very high activity was applied for homopolymerization of N derivatives (i.e., 5‐vinyl‐2‐norbornene (5V2N), 5‐ethylidene‐2‐norbornene (5E2N), dicyclopentadiene (DCPD)) at 40 °C. The activities for the N derivatives were about two orders of magnitude lower than that for N and decreased in the following order: 5E2N ? 5V2N ? DCPD. Copolymerization of ethene (E) and 5E2N under an atmospheric pressure of E was then conducted by 1 ‐dried MAO. The copolymerization proceeded with better activity than the homopolymerization of 5E2N and gave poly(E‐co‐5E2N) with narrow molecular weight distribution. The content of the ethylidene group in poly(E‐co‐5E2N) was controlled by the feed ratio of 5E2N/E. The Tg value of the copolymer changed from 70 °C to 155 °C according to the 5E2N content from 27 mol % to 68 mol %. The addition of N as a third monomer to the E‐5E2N copolymerization improved the activity and raised the Tg values of the terpolymer above 200 °C. The content of 5E2N was controlled by the 5E2N/N ratio with keeping the high Tg values. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4581–4587, 2007 相似文献
17.
Li‐Ming Tang Yi‐Qun Duan Li Pan Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2005,43(8):1681-1689
The copolymerizations of ethylene and cyclopentene with bis(β‐enaminoketonato) titanium complexes {[(Ph)NC(R2)CHC(R1)O]2TiCl2; R1 = CF3 and R2 = CH3 for 1a , R1 = Ph and R2 = CF3 for 1b ; and R1 = t‐Bu and R2 = CF3 for 1c } activated with modified methylaluminoxane (MMAO) as a cocatalyst were investigated. High‐molecular‐weight copolymers with cis‐1,2‐cyclopentene units were obtained. The catalyst activity, cyclopentene incorporation, polymer molecular weight, and polydispersity could be controlled over a wide range through the variation of the catalyst structure and reaction parameters, such as the Al/Ti molar ratio, cyclopentene feed concentration, and polymerization reaction temperature. The complex 1b /MMAO catalyst system exhibited the characteristics of a quasi‐living ethylene polymerization and an ethylene–cyclopentene copolymerization and allowed the synthesis of polyethylene‐block‐poly(ethylene‐co‐cyclopentene) diblock copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1681–1689, 2005 相似文献
18.
Ying‐Yun Long Wei‐Ping Ye XIN‐CUI SHI Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(22):6072-6082
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009 相似文献
19.
Marzena Białek Ozanna Liboska 《Journal of polymer science. Part A, Polymer chemistry》2010,48(2):471-478
Immobilization of 1,2‐cyclohexylenebis(5‐chlorosalicylideneiminato)vanadium dichloride on the magnesium support obtained in the reaction of MgCl2·3.4EtOH with Et2AlCl gives a highly active precursor for ethylene homopolymerization and its copolymerization with 1‐octene. This catalyst exhibits the highest activity in conjunction with MAO, but it is also highly active with AlMe3 as a cocatalyst. On the other hand, when combined with chlorinated alkylaluminum compounds, Et2AlCl and EtAlCl2, it gives traces of polyethylene. Moreover, its catalytic activity is strongly affected by the reaction temperature: it increased with rising polymerization temperature from 20 °C to 60 °C. The kinetic curves obtained for the supported vanadium catalyst, in contrast to its titanium analogue, are of decay type, yet the reduction in the polymerization rate is rather moderate in the early stages of polymerization, and then it is relatively very slow. The vanadium catalyst gives copolymers at a lower yield than the titanium one does, but with the significantly higher 1‐octene content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 471–478, 2010 相似文献
20.
Ying‐Yun Long Yong‐Xia Wang Bai‐Xiang Li Yan‐Guo Li Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2017,55(17):2787-2797
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797 相似文献