首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The CO_2 laser induced room temperature reactions of CH_3CF_2H or another protium-donorCH_3CHClCH_3 with chlorine-atom donors (Z--Cl) CFCl_2CF_2Cl, CF_3CCl_3, CFCl_3 or CF_2Cl_2, havebeen investigated. Some of these reactions can yield two important monomers (CF_2=CH_2 andCF_2=CFCl) for fluoropolymers simultaneously. The yield dependence of these two alkenes on experi-mental conditions has been studied. A laser-initiated chain process is supported by identifica-tion of Z--H intermediates in these reactions.  相似文献   

3.
Fluorinated surfactants are exceptional compounds that have found many applications in everyday life. This review focuses on severe issues on the toxicity, persistency and bioaccumulation of these halogenated products, especially perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), the half-lives of which are several years in human serum. After an introduction on their productions, uses and hazards, this minireview updates non-exhaustive recent strategies of synthesis of original fluorosurfactants that may be potentially non-bioaccumulable. These routes have been devoted on: (i) the preparation of CF3-X-(CH2)n-SO3Na (with X = O, C6H4O or N(CF3) and n = 8–12), (ii) the use of fluorinated polyethers (achieved either by oligomerization of hexafluoropropylene oxide (HFPO) or by ring opening cationic oligomerization of fluorinated oxetanes; (iii) the telomerization of vinylidene fluoride (VDF) with 1-iodoperfluoralkanes to produce CnF2n + 1-(VDF)2-CH2CO2R (n = 2 or 4, R = H or NH4), (iv) the radical telomerization of 3,3,3-trifluoropropene (TFP) with isoperfluoropropyliodide to prepare (CF3)2CF(TFP)x-RH, and (v) the radical cotelomerization of VDF and TFP, or their controlled radical copolymerization in the presence of either (CF3)2CFI or a fluorinated xanthate. In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above pathways led to various highly fluorinated (but yet not perfluorinated) telomers or cooligomers, the chemical changes of which enabled to obtain original surfactants as novel alternatives to PFOA, ammonium perfluorooctanoate (APFO), or PFOS regarded as the PCBs of the XXIst century.  相似文献   

4.
This minireview updates non-exhaustive recent strategies of synthesis of original fluorosurfactants potentially non-bioaccumulable. Various strategies have been focused on (i) the preparation of CF3–X–(CH2)n–SO3Na (with X = O, C6H4O or N(CF3) and n = 8–12), (ii) the oligomerization of hexafluoropropylene oxide (HFPO) to further synthesize oligo(HFPO)–CF(CF3)CO–RH (where RH stands for an hydrophilic chain); (iii) the telomerization of vinylidene fluoride (VDF) with 1-iodopentafluoroethane or 1-iodononafluorobutane to produce CnF2n+1–(VDF)2–CH2CO2R (n = 2 or 4, R = H or NH4), (iv) the radical telomerization of 3,3,3-trifluoropropene (TFP) with isoperfluoropropyliodide or diethyl hydrogenophosphonate to prepare (CF3)2CF(TFP)x–RH or CF3–CH2–CH2–(TFP)y–P(O)(OH)2, and (v) the radical cotelomerization of VDF and TFP, or their controlled radical copolymerization in the presence of (CF3)2CFI or a fluorinated xanthate. In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above strategies led to various highly fluorinated (but yet not perfluorinated) telomers whose chemical changes enabled to obtain original surfactants as novel alternatives to perfluorooctanoic acid (PFOA), ammonium perfluorooctanoate (APFO), or perfluorooctylsulfonic acid (PFOS) regarded as bioaccumulable, persistent, and toxic.  相似文献   

5.
The hydrogen abstraction reactions of CF3CF2CFH2 and CF3CFHCF2H with OH radicals and Cl atoms have been studied theoretically by a dual-level direct dynamics method. Two stable conformers of CF3CF2CFH2 with C s and C 1 symmetries and all possible abstraction channels for each reaction are all taken into consideration. Optimized geometries and frequencies of all the stationary points and extra points along minimum-energy path (MEP) have been computed at the BB1K/6-31+G(d, p) level of theory. To refine the energy profile of each reaction channel, single point energy calculations have been performed by the BMC-CCSD method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range of 200–1,000 K. The detailed branching ratios of four reactions are discussed. The good agreement found between our theoretical rate constants and the available experimental data suggests that the present approach could provide a reliable prediction for the CF3CFHCF2H + Cl reaction about which there is little experimental information. The kinetic calculations show that the SCT effect plays an important role in all channels. In addition, in order to further reveal the thermodynamic properties, the enthalpies of formation of the reactants (CF3CF2CFH2 and CF3CFHCF2H) and the product radicals (CF3CF2CFH, CF3CFCF2H, and CF3CFHCF2) are evaluated by applying isodesmic reactions at both BMC-CCSD//BB1K/6-31+G(d, p) and MC-QCISD//BB1K/6-31+G(d, p) levels of theory.  相似文献   

6.
The Gas Phase Structures of CF3NBr2 and (CF3)2NBr The gas phase structures of the trifluoromethyl bromoamines CF3NBr2 and (CF3)2NBr were determined by electron diffraction. CF3NBr2: N? Br = 188.0(3), N? C = 148.1(13) pm, BrNBr = 111.1(6)° and BrNC = 107.3(8)°; (CF3)2NBr: N? Br = 186.9(4), N? C = 144.9(7) pm, BrNC = 114.9(9)° and CNC = 118.6(24)°. The results for these bromoamines are compared to those for the analogous fluoro and chloroamines.  相似文献   

7.
The NMR Spectra of CF3I, CF3IF2, and CF3IF4 The 19F-NMR and 13C-NMR spectra of CF3I, CF3IF2 and CF3IF4 were recorded in acetonitrile solution. The chemical shifts of the CF3-groups are strongly dependent on the oxidation state of the iodine atom. With increasing oxidation state the resonances of the CF3-groups in the 19F-NMR spectra are characteristically shifted to high field, whereas in the 13C-NMR spectra a characteristic shift to low field is measured. The absolute value of the coupling constants 1J(19F? 13C) increases with increasing oxidation state from 344 Hz (CF3I) via 354 Hz (CF3IF2) to 359 Hz (CF3IF4).  相似文献   

8.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
In attempts to obtain kinetic and mechanistic data required for an assessment of atmospheric fate of alternative halocarbons containing a CF3 group, reactions of the key free radical intermediates CF3OO and CF3O with several atmospheric compounds (i.e., NO, NO2, alkanes and alkenes) have been studied at 297 ± 2 K in 700 torr of air. Experiments employed the long path-FTIR spectroscopic method for product analysis and the visible (400 nm) photolysis of CF3NO → CF3 + NO as a source for the precursor radical CF3. Numerous labile and stable F-containing molecular products have been characterized based on kinetic and spectroscopic data obtained at sufficiently short photolysis time (≤1 min) to minimize heterogeneous decay on the reactor walls. Major new findings have been made for the reactions involving CF3O radicals. The behavior of CF3O radicals has been shown to be markedly different from that of CH3O radicals, i.e., (1) O2-reaction: no evidence for the F-atom transfer reaction CF3O + O2 → CF2 O + FOO; (2) NO-reaction: addition reaction CH3O + NO (+M) → CH3ONO (+M), but F-transfer reaction CF3O + NO → CF2O + FNO; (3) NO2-reaction: addition reaction for both radicals, but F-transfer reaction CF3 + NO2 → CF2O + FNO2 to a minor extent; (4) alkane-reaction: much faster H-abstraction by CF3O, comparable to HO; (5) alkene-reaction: much faster addition reaction of CF3O, comparable to HO. These results are summarized in this paper.  相似文献   

10.
Perfluorosalkyl Tellurium Compounds: Oxidation of (CF3)2Te; Preparations and Properties of (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2Te(ONO2)2, and (CF3)2TeO From the oxidation of (CF3)2Te with Cl2, Br2, O2, and ClONO2 the new trifluoromethyl tellurium compounds (CF3)2TeCl2, (CF3)2TeBr2, (CF3)2TeO, and (CF3)2Te(ONO2)2 are prepared. The 19F, 13C and 125Te n.m.r. spectra, the vibrational and mass spectra as well as the chemical properties of these compounds are described. By variation of the reaction conditions CF3TeCl3 and CF3TeBr3 are also formed. It has not been possible to isolate (CF3)2TeI2, but there is some evidence that it is formed as an intermediate. (CF3)2Te reacts with ozone to a very unstable compound, which decomposes at low temperature.  相似文献   

11.
A variety of relative and absolute techniques have been used to measure the reactivity of fluorine atoms with a series of halogenated organic compounds and CO. The following rate constants were derived, in units of cm3 molecule?1 s?1: CH3F, (3.7 ± 0.8) × 10?11, CH3Cl, (3.3 ± 0.7) × 10?11; CH3Br, (3.0 ± 0.7) × 10?11; CF2H2, (4.3 ± 0.9) × 10?12; CO, (5.5 ± 1.0) × 10?13 (in 700 torr total pressure of N2 diluent); CF3H, (1.4 ± 0.4) × 10?13; CF3CCl2H (HCFC-123), (1.2 ± 0.4) × 10?12; CF3CFH2 (HFC-134a), (1.3 ± 0.3) × 10?12, CHF2CHF2 (HFC-134), (1.0 ± 0.3) × 10?12; CF2ClCH3 (HCFC-42b), (3.9 ± 0.9) × 10?12, CF2HCH3 (HFC-152a), (1.7 ± 0.4) × 10?11; and CF3CF2H (HFC-125), (3.5 ± 0.8) × 10?13. Quoted errors are statistical uncertainties (2σ). For rate constants derived using relative rate techniques, an additional uncertainty has been added to account for potential systematic errors in the reference rate constants used. Experiments were performed at 295 ± 2 K. Results are discussed with respect to the previous literature data and to the interpretation of laboratory studies of the atmospheric chemistry of HCFCs and HFCs. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

13.
Trifluoromethyl Nitrate, CF3ONO2 From different routes to CF3ONO2, the reaction of CF3OF with NO2 at room temperature under high pressure is the most favorable to synthesize CF3ONO2 in preparative scale. The pure product is isolated for the first time after repeated trap‐to‐trap condensation in vacuo. CF3ONO2 is a colourless gas with a boiling point of –18 ± 3 °C (extrapol.) and a melting point of –163 °C. Trifluoromethyl nitrate decays slowly into CF2O and FNO2 at room temperature in the gas phase as well as in the liquid state at lower temperatures. Furthermore, CF3ONO2 is characterized spectroscopically by NMR, IR, Raman, and UV, and structurally by gas electron diffraction and quantum chemical calculations (B3LYP, MP2). The CF3–O bond is in the plane of the NO3 moiety, the central CF3O–NO2 bond of 1.493(6) Å is very long. The B3LYP/6‐31G* calculation reproduces best the experimental data.  相似文献   

14.
(CF3)2PAsH2 and (CF3)2AsAsH2 (CF3)2PAsH2 is obtained in yields between 30 and 60% according to eq. (1) (CF3)2AsAsH2 is formed by the analogous reaction with (CF3)2AsI, but is not sufficiently stable to be isolated. Both compounds are decomposed according to eq. (2) (CF3)2PAsH2 can be studied in solution below ?40°C; it is characterized by molar mass determination and by its n.m.r. spectra (1H, 19F, 31P). Reactions with polar [HBr, (CH3)2AsH, (CH3)2PN(CH3)2] and nonpolar [Br2, As2(CH3)4] reagents proceed by cleavage of the P? As bond.  相似文献   

15.
Disproportionation/combination rate constant ratios, kd/kc, for the reactive collision between CF3CH2CHX + CF3 radicals and between CF3CH2CHX + CF3CH2CHX radicals have been measured for X = CF3. The kd/kc = 0.066 ± 0.013 when H is transferred to the CF3 radical and 0.125 ± 0.025 for H transfer to the CF3CH2CHCF3 radical. Comparison of these results with previous work shows that X = CF3 increases the kc/kc' s relative to X = Cl or H. The effect of the CF3 substituent on the disproportionation rate is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The Sulfenic Fluorides CF3SF and CF2CISF and their Dimers The reactions of RfSCl (Rf = CF3, CF2Cl) with HgF2 and AgF give RfSF and the dimer product RfSF2SRf in high yield and various ratios, in contrast, activated KF leads only to RfSF in low yield. A complex of transition metal and sulfenic halide as an intermediate step is discussed for the dimerisation. As liquid CF3SF2SCF3 disproportionates into CF3SF3 and CF3SSCF3 and the hydrolysis of CF3SF2SCF3 gives the stable compound CF3S(O)SCF3 · PF3 reacts with RfSF as well as with RfSF2SRf to RfSPF4. The products of the spontaneous decomposition of CF2ClSF were investigated. I.r., n.m.r., and mass spectra are reported and discussed. It was possible to carry out vapour pressure measurements of CF2ClSF.  相似文献   

17.
The rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2 have been measured over the temperature range 250–430 K. Kinetic measurements have been carried out using the flash photolysis, laser photolysis, and discharge flow methods combined respectively with the laser induced fluorescence technique. The influence of impurities in the samples was investigated by using gas‐chromatography. The following Arrhenius expressions were determined: k(CH3OCF2CF3) = (1.90) × 10−12 exp[−(1510 ± 120)/T], k(CH3OCF2CF2CF3) = (2.06) × 10−12 exp[−(1540 ± 80)/T], and k(CH3OCF(CF3)2) = (1.94) × 10−12 exp[−(1450 ± 70)/T] cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 846–853, 1999  相似文献   

18.
Reaction of Chlorine Nitrate with CF3I: Isolation of Trifluormethylchloroiodinenitrate CF3I(Cl)ONO2 and the Crystal Structure of Trifluormethyliodinedinitrate CF3I(ONO2)2 CF3I reacts with ClONO2 to Iodine(III)-compounds. After an addition CF3I(Cl)ONO2 is isolated and characterized by vibrational spectra. With surplus ClONO2 it is formed CF3I(ONO2)2. CF3I(ONO2)2 crystallizes monoclinic in the space group P21/c with the cell parameters a = 1 024.3(6) pm, b = 873.5(6) pm, c = 873.4(6) pm and Z = 4. We measered following bonding distances: I? O: 207.3(3) and 220.8(2) pm, I? C: 221.1(4) pm and N? O: from 119.1(4) to 141.5(3) pm. Through an intermolecular I ··· O-contact the central iodine becomes a distorted plane geometry.  相似文献   

19.
Rate constant ratios, kd/kc, for the disproportionation/combination reaction at a temperature of 295 ± 2 K, have been measured as 0.034 ± 0.009 for the collision between CF3CH2CF2 + CF3 radicals and as 0.075 ± 0.019 for CF3CH2CF2 + CF3CH2CF2 radicals. The effect of the two fluorine substituents on the rate constant ratio is compared to previous kd/kcs with CF3CH2CH2, CF3CH2CHCl, and CF3CH2CHCF3 radicals. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 237–243, 1999  相似文献   

20.
Classical trajectory simulations are used to study the intramolecular dynamics of isolated CF3H and the CF3H(H2O)3 cluster, by either exciting the CH stretch local mode to then=6 level or by adding an equivalent amount of energy to an OH stretch normal mode. Energy transfer from the CH local mode is statistically the same for CF3H(H2O)3 as for isolated CF3H, and agrees with previous experimental studies. Clusters excited with 6 quanta in the CH local mode are remarkably stable. Though the CF3H-(H2O)3 intermolecular potential is only 1.5 kcal/mol, only 1 of 26 clusters excited with 6 quanta in the CH local mode dissociate within 10 ps. The absorption linewidth for the CH local mode in CF3H(H2O)3 is related to IVR within CF3H and not to the unimolecular lifetime of the cluster. When an OH stretch normal mode of the cluster is excited, energy transfer to CF3H is negligible and nearly one half of the clusters dissociate within 10 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号