首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag-poy(BIS-co-HEMA-co-IA) nanocomposites are prepared via in situ reduction of silver salt embedded in swollen polymer gels by employing gamma irradiation. Hydrogels based on 2-hydroxyethyl methacrylate, itaconic acid and four types of poly(alkylene glycol) acrylate or methacrylate (Bisomers) were previously prepared using gamma irradiation. The nanocomposites are characterized by using UV–vis, swelling measurements and thermal analysis. Evolution of plasmon absorption detected by UV–vis spectrophotometry indicated generation of Ag nanoparticles in polymer hydrogels. Altering the structure of the hydrogels did not lead to alternation of the position of the absorption maximum. The bulk property of equilibrium swelling is dependent on the presence of the Ag nanostructures. The initial thermal stability of the polymer is slightly increased due to presence of silver as nanofiller.  相似文献   

2.
We have successfully developed a simple method for preparing silver nanoparticles (Ag NPs) using UV irradiation of AgNO3 in the interlamellar space of a montmorillonite (MMT) without any reducing agent or heat treatment. The properties of Ag/MMT nanocomposites were studied as a function of the UV irradiation period. UV irradiation disintegrated the Ag NPs into smaller size until a relatively stable size and size distribution were achieved. The results from UV–vis spectroscopy show that particles size of Ag NPs decrease with the increase of irradiation period. The crystalline structure of Ag NPs was determined by powder X-ray diffraction (PXRD).  相似文献   

3.
The photochemical stability of the blends of collagen and poly(ethylene oxide) PEO has been studied by Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy and viscosimetry. Surface properties before and after UV irradiation were observed using an optical microscope.Collagen and PEO were immiscible in diluted solution and only small interactions between the two components in the solid state were observed. New materials based on the blending of collagen and PEO that we obtained have a different photochemical stability than those of single components. In general, collagen/PEO blends are less stable under UV irradiation than pure collagen. The influence of PEO on the photochemical stability of collagen depends on the concentration of this polymer in the blend. Microscopic photographs show that the surface characteristics of thin films of collagen/PEO blends are not drastically altered after UV irradiation.  相似文献   

4.
Structure, thermal properties, and influence of layered double hydroxide (LDH) fillers on photocrosslinking behavior of high‐density polyethylene (HDPE)/LDH nanocomposites have been studied in the present article. The X‐ray diffraction and transmission electron microscopy analysis demonstrate that the completely exfoliated HDPE/LDH nanocomposites can be obtained by controlling the organomodified LDH loading via melt‐intercalation. The data from the thermogravimetric analysis show that the HDPE/LDH nanocomposites have much higher thermal stability than HDPE sample. When the 50% weight loss was selected as a comparison point, the decomposition temperature of HDPE/LDH sample with 5 wt % LDH loading is ~40 °C higher than that of HDPE sample. The effects of UV‐irradiation on the HDPE/LDH nanocomposites show that the photoinitiated crosslinking can destroy the completely exfoliated structure to form the partially exfoliated structure, which decreased the thermal stability of the nanocomposites. However, the thermal stability of photocrosslinked samples can increase with increasing the UV‐irradiation time. The effect of LDH loading on the gel content of UV‐irradiated nanocomposites shows that the LDH materials can greatly absorb the UV irradiation and thus decrease the crosslinking efficiency. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3165–3172, 2006  相似文献   

5.
SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis. diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations.  相似文献   

6.
《中国化学快报》2021,32(10):3180-3184
Increasing the charge separation and the utilization efficiency of sunlight are essential factors in a photocatalytic process. In this study, we prepared crystalline N-CQDs@W18O49 heterostructures, through the in situ growth of W18O49 nanocrystals on nitrogen-doped carbon quantum dots (N-CQDs). N-CQDs@W18O49 nanocomposites showed high activity in the photodegradation of ciprofloxacin (CIP) and methyl orange (MO). The photodegradation activity of the optimized N-CQDs@W18O49-5 sample was four times higher than that of W18O49 under ultraviolet-visible (UV–vis) light irradiation. The photodegradation activity of N-CQDs@W18O49-5 sample was two times higher than that of W18O49 under near-infrared (NIR) light irradiation. The enhanced photosensitivity of the nanocomposites was attributed to the promotion of charge separation by N-CQDs and the local surface plasmon resonance (LSPR) effect of W18O49 under NIR light irradiation. This work provides a promising approach for designing and manufacturing photocatalysts with full-spectral responsiveness and improved charge separation.  相似文献   

7.
A 4,5-dithienylimidazolium salt was found to undergo electrocyclic isomerization upon exposure to UV radiation (λ(irr) = 313 nm) under neutral and basic conditions; subsequent exposure to visible light reversed the reaction. Under ambient light and in the presence of base, the imidazolium species catalyzed transesterifications as well as amidations in a manner similar to those of previously reported N-heterocyclic carbene precatalysts. However, upon UV irradiation to effect the aforementioned photocyclization, the rate of the transesterification reaction between vinyl acetate and allyl alcohol was significantly attenuated (k(vis/UV) = 12.5), as was the rate of the condensation of ethyl acetate with aminoethanol (k(vis/UV) = 100). The rates of these reactions were successfully toggled between fast and slow states by alternating exposure to visible and UV light, respectively, thus demonstrating a rare example of a photoswitchable catalyst that operates via photomodulation of its electronic structure.  相似文献   

8.
采用直接沉淀法和水热合成法制备出形貌和尺寸比较均一的颗粒状、棒状和球形花状的纳米ZnO。使用硅烷偶联剂KH-42(苯胺甲基三乙氧基硅烷,C6H5-NH-CH2-Si(OCH3)3)对所得纳米ZnO进行表面化学修饰,修饰后的纳米ZnO(m-ZnO),经由皮克林乳液聚合法使苯胺单体在其表面聚合,形成聚苯胺(PANI)包覆的氧化锌纳米复合材料(m-ZnO@PANI),采用XRD、SEM、HRTEM、FTIR、UV-Vis、TG等对样品进行表征;研究了m-ZnO@PANI纳米复合材料对亚甲基蓝(MB)的光催化性能。结果表明,复合材料对可见光也有较强的吸收,在紫外、可见光照射下都有较好的光催化降解效率。其中,棒状ZnO纳米复合材料的光催化降解性能最好,它的紫外-可见光和可见光光催化降解率分别达到98.2%和97.1%,而且复合材料的光催化性能稳定,二次循环的紫外-可见光催化降解率仍达到96.0%。  相似文献   

9.
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer/anatase titanium oxide nanocomposite-encapsulated low molecular weight aromatic compounds [RF-(VM-SiO2)n-RF/an-TiO2/Ar-H] were prepared by the sol–gel reactions of the corresponding oligomer in the presence of anatase titanium oxide nanoparticles (an-TiO2) and the aromatic compounds such as bisphenol A [BPA], 1,1′-bi(2-naphthol) [BINOL], and fullerene under alkaline conditions. Thermogravimetric analyses measurements show that RF-(VM-SiO2)n-RF/an-TiO2 nanocomposite-encapsulated BPA and BINOL, in which the theoretical contents in the composites are 25?~?32 %, were found to give no weight loss corresponding to the contents of these aromatic compounds even after calcination at 800 °C. On the other hand, the corresponding nanocomposite-encapsulated fullerene exhibited weight loss behavior related to the presence of fullerene under similar conditions; however, UV–vis spectra showed the presence of the residual fullerene in the composites even after calcination. An-TiO2 in these fluorinated nanocomposites can keep its crystalline structure without phase transformation into rutile even after calcination at 1,000 °C, although the parent an-TiO2 nanoparticles underwent a complete phase transformation into rutile under similar conditions. Notably, RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites can give a good photocatalytic activity even after calcination at 1,000 °C for the decolorization of methylene blue under UV light irradiation. More interestingly, these fluorinated nanocomposites before and after calcination were found to exhibit a higher photocatalytic activity at the initial UV light irradiation from 1 to 3 min than that of the corresponding RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites under similar conditions.
Figure
Encapsulated BPA and BINOL in the nanocomposites exhibit no weight loss even after calcination at 800 °C, and RF-(VM-SiO2)n-RF/an-TiO2/Ar-H nanocomposites before and after calcination at 1,000 °C can give a higher photocatalytic activity than that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites. Notably, the photocatalytic activity of RF-(VM-SiO2)n-RF/an-TiO2/C60 nanocomposites after calcination increased by about 2.5-fold, compared with that of RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites.  相似文献   

10.
Biomass charcoal-doped titanium dioxide (C/TiO2) composites were proposed by microwave-hydrothermal and calcination method using tetrabutyl titanate as the titanium source and lignin as the carbon source. TiO2 crystals with different morphologies could be successfully adsorbed onto the surface of biomass charcoal. These products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), derivative thermogravimetric (DTG), UV–vis diffuser flection spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET). The photocatalytic activities of the as-obtained composites were checked under visible light irradiation. The results showed that both the microwave-hydrothermal temperature and time played an important role in the microstructure and photocatalytic activity of the samples. The rapid microwave-hydrothermal with the thermal post-treatment provides a promising route for the fabrication of biomass charcoal-doped nanocomposites materials.  相似文献   

11.
Novel ternary ZnO/Ag3VO4/Ag2CrO4 nanocomposites were successfully fabricated via preparation of ZnO/Ag3VO4 followed by coupling of it with Ag2CrO4 through facile ultrasonic-assisted method. The resultant samples were carefully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, UV–vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence techniques. Photocatalytic activity for degradation of organic dyes, including rhodamine B, methylene blue, and methyl orange was examined under visible-light irradiation. Among the prepared samples, the ternary nanocomposite with 20% of Ag2CrO4 demonstrated the superior activity. This nanocomposite showed 10.6, 2.9, and 3.0-folds greater activity compared to ZnO, ZnO/Ag2CrO4, and ZnO/Ag3VO4, respectively. The enhanced activity was attributed to more harvesting of the visible-light irradiation and efficiently separation of the photogenerated charge carriers in the ternary nanocomposites. To understand efficiently separation of the charge carriers, a plausible diagram was proposed based on formation of tandem n-n heterojunctions.  相似文献   

12.
The interaction of Co(Ⅱ) with BSA under UV C (253.7 nm) irradiation under physiological conditions has been studied by UV-vis spectrum, ultraviolet second-derivative spectroscopy and fluorescence spectrum. The quenching rate constant kq and the association constant Ka were calculated according to Stern-Volmer equation based on the quenching of the fluorescence of BSA by Co(Ⅱ).  相似文献   

13.
《Comptes Rendus Chimie》2014,17(7-8):839-848
Hybrid TiO2–hydroxypropyl methyl cellulose (TiO2–HPMC) nanophotocatalysts were prepared by a simple in situ synthesis. The weight ratios of HPMC-to-TiO2 were 5, 10 and 20%, respectively. The as-prepared nanocomposites were characterized by XRD, XPS, UV–vis DRS, ATG and BET surface area analysis. Surface morphology was assessed by the means of SEM. The photocatalytic degradation of 4-nitrophenol (4-NP) in neutral aqueous solution under visible light irradiation was examined to evaluate the efficiency of the hybrids in comparison to pure TiO2. The results indicated that the in situ hybridization of TiO2 with HPMC significantly increases its specific surface area and extends its light absorption range to the visible region. Consequently, TiO2–HPMC nanocomposites were photocatalytically much more active than pure TiO2. Moreover, the TiO2–HPMC hybrids were found to be sufficiently photostable after five experimental runs.  相似文献   

14.
利用含有羧基的氟碳聚合物电纺纤维为载体和模板材料,常温溶液条件下利用均匀沉淀法,在纤维表面负载硫化锌纳米粒子。通过控制反应条件,得到氟碳聚合物电纺纤维表面均匀分布、无团聚的直径在十几纳米左右的硫化锌-氟碳聚合物电纺纤维光催化复合材料。光催化复合材料的高比表面积和水中有机物富集能力使其在紫外光辐照条件下对次甲基蓝降解效率明显高于ZnS粉体。重复降解实验显示复合材料具有较好的稳定性和重复光催化能力。  相似文献   

15.
ZnO/graphene oxide(ZnO/GO) composite material,in which ZnO nanoparticles were densely coated on the GO nanosheets,was successfully prepared by an improved two-step method and characterized by IR, XRD,TEM,and UV-vis techniques.The improved photocatalytic property of the ZnO/GO composite material,evaluated by the photocatalytic degradation of methyl orange(MO) under UV irradiation,is ascribed to the intimate contact between ZnO and GO,the enhanced adsorption of MO,the quick electron transfer from excited ZnO particles to GO sheets and the activation of MO molecules viaπ-πinteraction between MO and GO.  相似文献   

16.

A facile procedure, involving one-pot synthesis of CeVO4/BiVO4 and in-situ reduction of graphene oxide (GO), has been used to prepare CeVO4/BiVO4/rGO nanocomposites. Different ratios of the CeVO4–BiVO4 were prepared to afford composites represented as CBVG3, CBVG5, and CBVG7. The ternary nanocomposite materials were characterized by using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), photoluminescence and UV–vis spectroscopic techniques. Photocatalytic efficiency of the as-prepared ternary nanocomposites was investigated through the photo degradation of methyl orange under a visible light irradiation at 470 nm. The photocatalytic performance was enhanced by loading the CeVO4/BiVO4 nanoparticles on reduced graphene oxide (rGO), given MO degradation rate of 57, 65, 80, and 90% for BVG, CBVG3, CBVG5, and CBVG7, respectively after exposure to visible light for 120 min. Effects of experimental process parameters including initial dye concentration, catalysts loading and effect of different modification regimes were studied using CBVG7, which exhibited the highest efficiency. The improvement in the photocatalytic efficiency may be attributed to increased surface area of the nanocomposites, enhanced light absorption capacity and improved charge separation. The study showed a one-pot synthesis route to prepare promising CeVO4/BiVO4/GO nanocomposites for the photo-enhanced degradation of dye contaminants.

  相似文献   

17.
Chemistry and Chemical Engineer School, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China  相似文献   

18.
In this study, a heterostructure photocatalyst of ZnO nanoparticles decorated with boron nitride quantum dots (ZnO/BNQDs) was successfully synthesized by a simple solution procedure. The synthesized ZnO/BNQDs show that the BNQDs effectively suppress the recombination of photoinduced electrons and holes and the transfer of holes from ZnO nanoparticles by the formation of a heterojunction. The ZnO/BNQD nanocomposites thus demonstrate superior photocatalytic performances and excellent stability for the degradation of methylene blue (MB) and methyl orange (MO) under UV light irradiation. Based on the obtained results, the possible photocatalytic mechanism is proposed and discussed. Thus, the ZnO/BNQD nanocomposites demonstrate potential as an efficient low-cost photocatalyst for application in the photodegradation of organic dyes in wastewater for environmental remediation.  相似文献   

19.
Dysprosium (Dy)‐doping SrMoO4 (with different molar ratio of Dy/Sr = 0/100, 10/100, 15/100 and 20/100) have been synthesized by high temperature thermal decomposition of metal–organic salt in organic solvent with a high boiling point. Their structures, morphology, and optical properties were characterized by X‐ray diffraction (XRD), high‐resolution tuning electron microscopy ((HR)TEM), X‐ray photo‐electron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). Using this method, the pure phase, nano‐size, and low band gap of SrMoO4 sample are obtained. The results shows that the size of as‐synthesized SrMoO4 nanoparticles was about 200 nm. The band gap of Dy‐doped SrMoO4 ranges from 3.76–3.90 eV, and decreases with increasing Dy concentration. The photocatalytic performance of as‐syntheszied products were determined from the degradation of methylene blue (MB) by UV–vis light irradiation. The 15 mol%Dy‐doped SrMoO4 sample shows the best performance for photocatalytic degradation of methyl blue of nearly 100% in 120 min under visible irradiation, which is higher than most of those reported before. The present work is meaningful for revealing the underlying mechanism in photocatalyst and improving the photocatalytic performance.  相似文献   

20.
In current research, nano-scaled Li2B4O7/NiO/Ni3(BO3)2 (LiBNi) composites were fabricated through improved pechini sol–gel method for advanced photocatalytic applications to remove dye contaminations of drinking water under UV/Visible irradiation. To optimize LiBNi nanocomposites properties, different complexing agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tannic acid, tartaric acid and phthalic acid were utilized in pechini sol–gel process. Various sizes and morphologies of Li2B4O7/NiO/Ni3(BO3)2 nanocomposites obtained that were characterized by SEM and TEM techniques. Also, to confirm crystalline and structural features of nano-sized LiBNi samples, analyses of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) were performed. By consideration of UV–Vis data, band-gap of LiBNi nanocomposites premeditated is 3.35 eV. Moreover, photocatalytic degradation of Li2B4O7/NiO/Ni3(BO3)2 nanocomposites was examined via UV/visible waves in aqueous solution for degradation acid red 88 pollutant after 90 min. Some operative factors such as nanocatalyst concentration and irradiation type for optimized LiBNi nanocomposites were assessed for removal of drinking water contaminant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号