共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic Water Oxidation by Ruthenium(II) Quaterpyridine (qpy) Complexes: Evidence for Ruthenium(III) qpy‐N,N′′′‐dioxide as the Real Catalysts 下载免费PDF全文
Yingying Liu Dr. Siu‐Mui Ng Dr. Shek‐Man Yiu Dr. William W. Y. Lam Xi‐Guang Wei Dr. Kai‐Chung Lau Prof. Tai‐Chu Lau 《Angewandte Chemie (International ed. in English)》2014,53(52):14468-14471
Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation‐resistant and can stabilize high‐oxidation‐state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2]2+ (qpy=2,2′:6′,2′′:6′′,2′′′‐quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze CeIV‐driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy‐N,N′′′‐dioxide (ONNO) complexes [Ru(ONNO)(L)2]3+ which are the real catalysts for water oxidation. 相似文献
2.
Bernd Domhver Wolfgang Klui Andreas Kremer-Aach Ralf Bell Dietrich Mootz 《Angewandte Chemie (International ed. in English)》1998,37(21):3050-3052
Can palladium be replaced by nickel? For the industrial copolymerization of carbon monoxide and ethene a palladium catalyst is used which cannot be recovered—a cheaper procedure would be desirable. The presented complex 1 is the first structurally characterized nickel compound which does not polymerize ethene but a mixture from carbon monoxide and ethene unter mild conditions to give a perfectly alternating polyketone. 相似文献
3.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(1-3):83-90
The oxidation of symmetric and unsymmetric nickel(II) Schiff base complexes was examined in acetonitrile by cyclic voltammetry. Unlike nickel(II) bis(salicylaldimine) complexes which undergo oxidative polymerization at the electrode surface, the complexes examined in this study contain at least one β-ketoimine chelate and are irreversibly oxidized at the electrode surface. The mixed chelate complexes are oxidized at potentials midway between those of the symmetric bis(salicylaldimine) and bis(β-ketoimine) complexes, suggesting a metal-localized rather than a ligand-localized oxidation. Oxidation of nickel(II) to nickel(III) followed by rapid intramolecular electron transfer to give reactive ligand-radical species is proposed to explain the irreversible oxidation of the nickel(II) Schiff base complexes. 相似文献
5.
Hans-Friedrich Klein 《Angewandte Chemie (International ed. in English)》1980,19(5):362-375
One of the greatest achievements of organometallic chemistry in the last ten years has been the experimental proof that transition metal-to-carbon bonds are thermodynamically about as stable as those between main group elements and carbon. The present contribution demonstrates how simply constituted alkylnickel, -cobalt, and -iron complexes are obtained by means of a kinetic stabilization using suitable neutral ligands and what information these model compounds can provide with respect to the course of processes in homogeneous catalyses. 相似文献
6.
Alkylation reactions of nickel(II) complex 6 derived from glycine and 2‐[(1‐benzyl‐L ‐prolyl)amino]benzophenone (BPBP) were studied under phase‐transfer‐catalysis (PTC) conditions. The goal of this work was to find an alternative suitable solvent for these reactions to replace the commonly used CH2Cl2 which leads to the formation of several by‐products, thus lowering the yield of target compounds. We demonstrate that 1,2‐dichloroethane is a markedly better solvent providing higher yields (75–99%) of the desired products 10 with 36–88% diastereoisomer purity (Scheme 3 and Table). Furthermore, we show that the stereochemical outcome of these PTC reactions (kinetic control) can be easily improved to >95% de by treatment of the PTC products with MeONa/MeOH. The scope of these reactions includes alkylations with methyl iodide as well as activated halides such as benzyl, allyl or propargyl, bromides and most notably ethyl 2‐bromoacetate (Table). 相似文献
7.
Jesús Martínez Rufina Bastida Alejandro Macías Laura Valencia Manuel Vicente 《无机化学与普通化学杂志》2005,631(11):2046-2053
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions. 相似文献
8.
Inmaculada Beloso Paulo Prez‐Lourido Jesús Castro Jos A. García‐Vzquez Jaime Romero 《无机化学与普通化学杂志》2005,631(11):2101-2106
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring. 相似文献
9.
We established a strategy to synthesize novel unsymmetric 2,3‐diaza‐1,4‐dithiane ligands. Reaction of [Ni(acac)2] and trityl tetrakis(pentafluorophenyl)borate in the presence of these ligands afforded the corresponding salt‐type complexes. All new compounds were characterized by means of elemental analysis and NMR spectroscopy, and the complexes additionally by mass spectroscopy. NMR spectroscopic experiments on polymers generated by the symmetric ligand/trimethylaluminum catalyst system showed that all products were nearly linear, independent of the polymerization conditions. By contrast, polymers produced by the unsymmetric ligand/trimethylaluminum catalyst system under homopolymerization conditions were branched (15–24 ‰). Additionally, copolymerization experiments with propylene and 1‐hexene afforded copolymers with a branching level of up to 50 ‰. 相似文献
10.
Damir A. Safin Dr. Felix D. Sokolov Sergey V. Baranov Łukasz Szyrwiel Maria G. Babashkina Elmira R. Shakirova F. Ekkehardt Hahn Henryk Kozlowski 《无机化学与普通化学杂志》2008,634(5):835-838
Reaction of the potassium salt of N‐diisopropoxyphosphinyl‐p‐bromothiobenzamide p‐BrC6H4C(S)NHP(O)(OiPr)2 ( HL ) with Ni(NO3)2 in aqueous EtOH leads to complex of formula [Ni(HL‐O)2(L‐O,S)2] ( 1 ). The structure of 1 was investigated by single crystal X‐ray diffraction analysis, IR, 1H and 31P{1H} NMR spectroscopy, MALDI and microanalysis. The nickel(II) ion in 1 has a tetragonal‐bipyramidal environment, (Oax)2(Oeq)2(Seq)2, with two neutral ligand molecules coordinated in axial positions through the oxygen atoms of the P=O groups. The equatorial plane of bipyramide is formed by two anionic ligands involving 1,5‐O,S‐coordination mode. The chelating ligands are bound in trans configuration. 相似文献
11.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures. 相似文献
12.
İsmail Özdemir Neslihan Şahin Bekir Çetinkaya 《Monatshefte für Chemie / Chemical Monthly》2007,138(3):205-209
Summary. Six [RuCl2(1-alkylbenzimidazole)(p-cymene)] complexes have been prepared and the new compounds characterized by C, H, N analyses, 1H NMR, and 13C NMR. The reduction of ketones to alcohols via transfer hydrogenation was achieved with catalytic amounts of the complexes in the presence of t-BuOK. 相似文献
13.
Six tetraamine ligands, 2,5,8,11-tetraazadodecane, 2,5,9,12-tetraazatridecane, 3,7-dimethyl-3,7-diazanonane-l,9-diamine, 2,6,9,13-tetraazatetradecane, 4,7-dimethyl-4,7-diazadecane-l,10-diamine, 4-methy]-4,7-diazadecane-l,10-diamine, and their nickel(II) complexes have been synthesized. The equilibrium constants and thermodynamic parameters of the high-spin-low-spin conversion of these complexes at various temperatures in 0.10 M NaC1O4 have been investigated by spectrophotometric techniques. Influences of the enthalpies of these reactions are attributed to an endothermic contribution due to the breaking of the two Ni-OH2 bonds, an exothermic contribution due to the strengthening of the four in-plane Ni-N bonds, an exothermic contribution due to the different ligand field stabilization energies of the square-planar and the octahedral complexes, an endothermic contribution due to the steric repulsions between the N-methyl group(s) and methylene groups as well as that between the two N-methyl groups of the tetraamine, an exothermic contribution due to the steric repulsions between the N-methyl group(s) and the coordinated water molecules, and an exothermic contribution due to the inductive effect of the N-methyl group(s). The important factors influencing the values of the entropies of these reactions are a negative term due to the reduction of spin multiplicity and a large positive term due to the release or the mobilization of the two coordinated water molecules. 相似文献
14.
Wei Han Ling Li Zhan‐Quan Liu Shi‐Ping Yan Dai‐Zheng Liao Zong‐Hui Jiang Pan‐Wen Shen 《无机化学与普通化学杂志》2004,630(4):591-596
Three new complexes [CuL(N3)2] ( 1 ), [CuL(SCN)2] ( 2 ), and [NiL(SCN)2] ( 3 ) (L = 1, 4, 7‐triisopropyl‐1, 4, 7‐triazacyclononane, [—NR—C2H4—NR—C2H4—NR—C2H4—], R = i‐Pr) have been synthesized and structurally characterized. The three complexes all crystallize in the monoclinic space group P21/n, with the unit cell parameters a = 9.100(5), b = 19.492(11), c = 11.646(6)Å, β = 94.526(9)° for 1 , a = 10.148(3), b = 13.611(5), c = 15.777(6)Å, β = 95.412(6)° for 2 and a = 9.270(7), b = 16.629(14), c = 14.886(12)Å, β = 101.217(15)° for 3 . The central copper(II) and nickel(II) ions are coordinated to five nitrogen atoms, three of which from the L and two from N3— or SCN—, forming a slightly distorted square pyramidal geometry. Moreover, elemental analysis, IR, UV‐vis and ESR spectra of complexes 1 ‐ 3 were also determined. 相似文献
15.
Copper(II) and Sodium(I) Complexes based on 3,7‐Diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide: Synthesis,Characterization, and Catalytic Activity 下载免费PDF全文
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2(κO‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand. 相似文献
16.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 . 相似文献
17.
The mononuclear structure of Zn[S2CN(Me)Cy)]2 features a tetrahedral zinc center defined by two chelating dithiocarbamate ligands. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
18.
Dr. Anna Dall'Anese Dr. Massimo Tosolini Chiara Alberoni Dr. Gabriele Balducci Dr. Maurizio Polentarutti Prof. Dr. Claudio Pellecchia Prof. Dr. Paolo Tecilla Prof. Dr. Barbara Milani 《欧洲无机化学杂志》2023,26(1):e202200481
The last two decades have witnessed the development of homogeneous catalysts for ethylene homo- and co-polymerization reactions based on late transition metals. When Pd(II) is the metal of choice, the best ligand-metal combination deals with either bidentate nitrogen-donor molecules or phosphinobenzene sulfonate derivatives. In this contribution we have investigated the coordination chemistry to Pd(II) of a bidentate phosphorus ligand, namely 4,5-bis(diphenylphosphino)acenaphthene ( 1 ). Starting from the neutral complex, [Pd( 1 )(CH3)Cl], we obtained the cationic derivatives [Pd( 1 )(CH3)(L)][SbF6], with L being either CH3CN or 3,5-lutidine. Using in situ NMR spectroscopy we investigated the reaction of [Pd( 1 )(CH3)(NCCH3)][SbF6] with ethylene, at room temperature, and ambient ethylene pressure. We discovered that [Pd( 1 )(CH3)(NCCH3)][SbF6] acts as a catalyst for butenes and hexenes synthesis with the relevant Pd-ethyl intermediate as the catalyst resting state. At the same time the color of the solution turned from pale yellow to light red due to the formation of the dinuclear species [Pd(μ-η2−C6H5)PPh)−PPh2]2[SbF6]2. Both the neutral Pd(II) complex, activated in situ by NaSbF6, and the monocationic acetonitrile derivative were tested in the ethylene homopolymerization reaction at high pressure, leading to low molecular weight, branched, polyethylene. 相似文献
19.
Complexes of Nickel(II) with Oxalic Amidines and Oxalic Amidinates with Additonal R2P‐Donor Groups Oxalamidines R1N=C(NHR2)‐C(=NHR2)=NR1, which bear additional donor atoms at two of the four N substituents ( H2A : R1 = mesityl, R2 = ‐(CH2)3‐PPh2; H2B : R1 = tolyl, R2 = ‐(CH2)3‐PMe2) form binuclear complexes with Nickel(II) in which very different coordination modes are realized. In the complex [ (A) Ni2Br2] (1) the two nickel atoms at each side of the bridge are in a square‐planar environment, coordinated by the two N donor atoms of the oxalic amidinate framework, a bromide and a Ph2P group. An analogous coordination has the organometallic compound [ (A) Ni2Me2] (2) . In contrast, the two nickel atoms in the compound {[( B )][Ni(acac)]2} (5) differ in their coordinative environment. At one side of the oxalic amidinate bridging ligand a (acac)Ni fragment is coordinated by the two N donor atoms resulting in a square‐planar environment. At the opposite side the (acac)Ni fragment is coordinated at the both N donor ligands of the bridging ligand as well as at the two PMe2 groups of the side chains resulting in an octahedral coordination for this nickel atom. 相似文献
20.
Kevin Salzmann Candela Segarra Martin Albrecht 《Angewandte Chemie (International ed. in English)》2020,59(23):8932-8936
An exceptionally efficient ruthenium‐based catalyst for olefin oxidation has been designed by exploiting N,N′‐bis(pyridylidene)oxalamide (bisPYA) as a donor‐flexible ligand. The dynamic donor ability of the bisPYA ligand, imparted by variable zwitterionic and neutral resonance structure contributions, paired with the redox activity of ruthenium provided catalytic activity for Lemieux–Johnson‐type oxidative cleavage of olefins to efficiently prepare ketones and aldehydes. The ruthenium bisPYA complex significantly outperforms state‐of‐the‐art systems and displays extraordinary catalytic activity in this oxidation, reaching turnover frequencies of 650 000 h?1 and turnover numbers of several millions. 相似文献