首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High molecular weight poly(vinyl)silazane were synthesized successfully by reversible addition fragmentation chain transfer (RAFT) polymerization in toluene at 120 °C, using dithiocarbamate derivatives and 2,2′‐azobis‐isobutyrylnitrile (AIBN) as the RAFT agents and thermal initiator, respectively. The polymerization of a vinylcyclicsilazane oligomer with 82.5% conversion was readily controlled to increase the molecular weight from 1000 to 12,000 g/mol with a narrow polydispersity <1.5. The resulting polymer showed a high ceramic yield of 70 wt % at 1000 °C. Moreover, the approach was extended successfully to the synthesis of poly(vinyl)silazane‐block‐polystyrene as an inorganic–organic diblock copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4594–4601, 2008  相似文献   

2.
The polymerization of methacrylamide (MAM) was performed in aqueous media via reversible addition fragmentation chain transfer (RAFT) polymerization with the dithiobenzoate chain‐transfer agent (CTA) 4‐cyanopentanoic acid dithiobenzoate (CTP) and 4,4′‐azobis(4‐cyanopentanoic acid) (V‐501) as initiator. The polymerization in unbuffered water at 70 °C with a CTP/V‐501 ratio of 1.5 was controlled for the first 3 h, after which the molecular weight distribution broadened and a substantial deviation of the experimental from the theoretical molecular weight occurred, presumably because of a loss of CTA functionality at longer polymerization times. Conducting the polymerization in an acidic buffer afforded a well‐defined homopolymer (Mn = 23,800 g/mol, Mw/Mn = 1.08). To demonstrate the controlled/living nature of the system, a block copolymer of MAM and acrylamide was successfully prepared (Mn = 33,800 g/mol, Mw/Mn = 1.25) from a polymethacrylamide macro‐CTA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3141–3152, 2005  相似文献   

3.
Water‐soluble cationic polymers, poly(histamine acrylamide)s (PHAs), with superior buffer capacity at the endosomal pH range were designed, prepared, and investigated for non‐viral gene transfection. PHAs were obtained with molecular weights ranging from 9.2 to 28.7 kDa through controlled radical polymerization of histamine acrylamide (HA). Acid–base titration results displayed that all PHA polymers had a remarkably high buffer capacity of about 70% at pH 5.1–7.2. 12.7–28.7 kDa PHAs were able to effectively condense DNA into nano‐sized (<220 nm) polyplexes with moderate positive surface charges (+13–+19 mV) at N/P ratios ≥10/1. CCK assays indicated that polyplexes of 12.7 and 17.5 kDa PHAs were non‐toxic to COS‐7 cells up to a tested N/P ratio of 20/1. Interestingly, the in vitro transfection using pCMV‐Luc and pEGFP‐C1 plasmid DNA as reporter genes showed that polyplexes of 12.7 kDa PHA formed at an N/P ratio of 20/1 mediated efficient transfection in COS‐7 cells under 10% serum conditions, with transfection efficiencies comparable to that of 25 kDa polyethylenimine control. Their versatile design of structures, controlled synthesis, low cytotoxicity, and high transfection activity render PHA‐based cationic polymers particularly interesting for the development of safe and efficient non‐viral gene delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
We report the direct homopolymerization and block copolymerization of 2‐aminoethyl methacrylate (AEMA) via aqueous reversible addition‐fragmentation chain transfer (RAFT) polymerization. The controlled “living” polymerization of AEMA was carried out directly in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent (CTA), and 2,2′‐azobis(2‐imidazolinylpropane) dihydrochloride (VA‐044) as the initiator at 50 °C. The controlled “living” character of the polymerization was verified with pseudo‐first order kinetic plots, a linear increase of the molecular weight with conversion, and low polydispersities (PDIs) (<1.2). In addition, well‐defined copolymers of poly(AEMA‐b‐HPMA) have been prepared through chain extension of poly(AEMA) macroCTA with N‐(2‐hydroxypropyl)methacrylamide (HPMA) in water. It is shown that the macroCTA can be extended in a controlled fashion resulting in near monodisperse block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5405–5415, 2009  相似文献   

5.
Liquid crystalline block copolymers (LCBCPs) are fascinating for their combining molecular level liquid crystalline orders and microphase separated multidomain morphologies. Here in this article, a series of PEG‐containing side‐chain discotic LCBCPs of PEG‐bPmn with variant spacer length m = 6, 10 and degree of polymerization (DP) of discotic LC block from n = 10 to 45, have been well‐synthesized via reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. The RAFT process mediated by macromolecular chain transfer agent (macroCTA) shows remarkable monomer concentration dependence. The influence of the introduced PEG block on the nano‐scale microphase‐segregation and mesophase organization is closely related to the side‐chain triphenylene (TP) discogens stacking mode dependent on the spacer length. Wherein, the PEG‐bP6n series with a six‐methylene spacer exhibit consistent microphase separation with slightly disturbed yet ordered columnar structures. While for PEG‐bP10n series with a longer ten‐methylene spacer, the columnar organization in the copolymers is even improved in contrast with the low order of randomly TP stacking in their corresponding homopolymers. This work offers a viable and inspiring pathway for controlled synthesis of block copolymers with bulky side groups, as well as enhances in‐depth understanding of the hierarchical superstructure organization in discotic units involved complex block copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2544–2553  相似文献   

6.
Controlled and very rapid ambient temperature polymerization of tert‐butyl acrylate (tBA) via atom transfer radical polymerization (ATRP) and single electron transfer living radical polymerization (SET‐LRP) conditions is reported. Two initiators, one that would generate a secondary radical and another that would generate a primary radical, upon activation, are used. A very active catalyst CuBr/Me6TREN was found to initiate rapid polymerization whether it was the primary or the secondary initiator. The polymerization was well controlled and very rapid. The initiator that produces secondary initiating site is found to result in more rapid polymerization than the one that produces primary initiating site. To explore the possibility of rapid ambient temperature polymerization through the SET‐LRP mechanism, the polymerization was also carried out in the presence of DMSO. It was found that the polymerization was much faster compared to the bulk ATRP, without loss of control. Styrene was block copolymerized from PtBA macroinitiators and vice versa. In both the cases, block copolymers with controlled molecular weights were obtained. The tBA block of the polymer was selectively hydrolyzed to get amphiphilic block copolymers. This amphiphilic block copolymer was found to be useful in preparing stable cadmium sulfide (CdS) nanoparticulate dispersion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

8.
A hydrophilic ruthenium complex with ionic phosphine ligands { 1 : RuCl2[P(3‐C6H4SO3Na)(C6H5)2]2} induced controlled radical polymerization of 2‐hydroxyethyl methacrylate (HEMA) in methanol under homogeneous conditions; the initiator was a chloride (R‐Cl) such as CHCl2COPh. The number‐average molecular weights of poly(HEMA) increased in direct proportion to monomer conversion, and the molecular weight distributions were relatively narrow (Mw/Mn = 1.4–1.7). A similar living radical polymerization was possible with (MMA)2‐Cl [(CH3)2C(CO2CH3)CH2C(CH3)(CO2CH3)Cl] as an initiator coupled with amine additives such as n‐Bu3N. In a similar homogeneous system in methanol, methyl methacrylate (MMA) could also be polymerized in living fashion with the R‐Cl/ 1 initiating system. Especially for such hydrophobic polymers, the water‐soluble ruthenium catalyst was readily removed from the polymers by simple washing with an aqueous dilute acid. This system can be applied to the direct synthesis of amphiphilic random and block copolymers of HEMA and MMA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2055–2065, 2002  相似文献   

9.
In this work, a benzenedinitrile functionalized monomer, 2‐methyl‐acrylic acid 6‐(3,4‐dicyano‐phenoxy)‐hexyl ester, was successfully polymerized via the reversible addition‐fragmentation chain transfer method. The polymerization behavior conveyed the characteristics of “living”/controlled radical polymerization: the first‐order kinetics, linear increase of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and successful chain‐extension experiment. The soluble Zn(II) phthalocyanine (Pc)‐containing (ZnPc) polymers were achieved by post‐polymerization modification of the obtained polymers. The Zn(II) phthalocyanine‐functionalized polymer was characterized by FTIR, UV–vis, fluorescence, atomic absorption spectroscopy, and thermogravimetric analysis. The potential application of above ZnPc‐functionalized polymer as electron donor material in bulk heterojunction organic solar cell was studied. The device with ITO/PEDOT:PSS/ZnPc‐Polymer/PC61BM/LiF/Al structure provided a power conversion efficiency of 0.014%, fill factor of 0.24, open circuit voltage (Voc) of 0.21 V, and short‐circuit current (Jsc) of 0.28 mA/cm2. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 691–698  相似文献   

10.
11.
Amphiphilic block copolymers were synthesized via the reversible addition fragmentation chain transfer (RAFT) copolymerisation of 2‐methacrylamido glucopyranose (MAG) and 5′‐O‐methacryloyl uridine (MAU). Homopolymerisations of both monomers using (4‐cyanopentanoic acid)‐4‐dithiobenzoate (CPADB) proceeded with pseudo first order kinetics in a living fashion, displaying linear evolution of molecular weight with conversion and low PDIs. A bimodal molecular weight distribution was observed for PMAU at low conversions courtesy of hybrid behavior between living and conventional free radical polymerization. This effect was more pronounced when a PMAG macroRAFT agent was chain extended with MAU, however, in both cases, good control was attained once the main RAFT equilibrium was established. A stability study on PMAU found that its hydrolysis is diffusion controlled, and is accelerated at physiological pH compared with neutral conditions. Self‐assembly of four block copolymers with increasing hydrophobic (PMAU) block lengths produced micelles, which demonstrated an increased tendency to form rods as the PMAU block length increased. Interestingly, none of the block copolymers were surface‐active. An initial assessment of PMAU's ability to bind the nucleoside adenosine through base pairing was highly promising, with DSC measurements indicating that adenosine is fully miscible in the PMAU matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1706–1723, 2009  相似文献   

12.
We describe the synthesis of activated homopolymers and copolymers of controlled molecular weight based on the controlled radical polymerization of N‐acryloyloxysuccinimide (NAS) by reversible addition fragmentation chain transfer (RAFT). We synthesized activated homopolymers in a range of molecular weights with polydispersities between 1 and 1.2. The attachment of an inhibitory peptide to the activated polymer backbone yielded a potent controlled molecular weight polyvalent inhibitor of anthrax toxin. To provide greater control over the placement of the peptides along the polymer backbone, we also used a semibatch copolymerization method to synthesize copolymers of NAS and acrylamide (AAm). This approach enabled the synthesis of copolymers with control over the placement of peptide‐reactive NAS monomers along an inert backbone; subsequent functionalization of NAS with peptide yielded well‐defined polyvalent anthrax toxin inhibitors that differed in their potencies. These strategies for controlling molecular weight, ligand density, and ligand placement will be broadly applicable for designing potent polyvalent inhibitors for a variety of pathogens and toxins and for elucidating structure–activity relationships in these systems. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7249–7257, 2008  相似文献   

13.
Amphiphilic block copolymers of poly(acrylic acid‐b‐butyl acrylate) were prepared by reversible addition–fragmentation chain transfer polymerization in a one‐pot reaction. These copolymers were characterized by NMR, static and dynamic light scattering, tensiometry, and size exclusion chromatography. The aggregation characteristics of the copolymers corresponded to those theoretically predicted for a star micelle. In a butyl acrylate and methyl methacrylate emulsion polymerization, low amounts of these copolymers could stabilize latices with solid contents up to 50%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 684–698, 2003  相似文献   

14.
We have designed and synthesized rod–coil–rod triblock copolymers of controlled molecular weight by two‐step nitroxide‐mediated radical polymerization, where the rod part consists of “mesogen‐jacketed liquid crystalline polymer” (MJLCP). The MJLCP segment examined in our studies is poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} (MPCS) while the coil part is polyisoprene (PI). Characterization of the triblock copolymers by GPC, 1H and 13C NMR spectroscopies, TGA, DSC confirmed that the triblock copolymers were comprised of microphase‐separated low Tg amorphous PI and high Tg PMPCS blocks. Analysis of POM and 1D, 2D‐WAXD demonstrated that the triblock copolymers formed nematic liquid crystal phase. Morphological studies using TEM indicated the sample formed lamellar structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5949–5956, 2007  相似文献   

15.
The thermoresponsive poly(ionic liquid) of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate] trithiocarbonate (P[VBMI][BF4]‐TTC) showing the soluble‐to‐insoluble phase transition in the methanol/water mixture at the upper critical solution temperature (UCST) was synthesized by solution RAFT polymerization and the synthesized P[VBMI][BF4]‐TTC was employed as macro‐RAFT agent to mediate the RAFT polymerization under dispersion condition to afford the thermoresponsive diblock copolymer nanoparticles of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate]‐b‐polystyrene (P[VBMI][BF4]‐b‐PS). The controllable solution RAFT polymerization was achieved as indicated by the linearly increasing polymer molecular weight with the monomer conversion and the narrow molecular weight distribution. The P[VBMI][BF4]‐TTC macro‐RAFT agent mediated dispersion polymerization afforded the P[VBMI][BF4]‐b‐PS nanoparticles, the size of which was uncorrelated with the polymerization degree of the P[VBMI][BF4] block. Several parameters including the polymerization degree, the polymer concentration and the water content in the solvent of the methanol/water mixture were found to be correlated with the UCST of the poly(ionic liquid). The synthesized poly(ionic liquid) is believed to be a new thermos‐responsive polymer and will be useful in material science. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 945–954  相似文献   

16.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has been shown to be a facile means of synthesizing comb, star, and graft polymers of styrene. The precursors required for these reactions were synthesized readily from RAFT‐prepared poly(vinylbenzyl chloride) and poly(styrene‐co‐vinylbenzyl chloride), which gave intrinsically well‐defined star and comb precursors. Substitution of the chlorine atom in the vinylbenzyl chloride moiety with a dithiobenzoate group proceeded readily, with a minor detriment to the molecular weight distribution. The kinetics of the reaction were consistent with a living polymerization mechanism, except that for highly crowded systems, there were deviations from linearity early in the reaction due to steric hindrance and late in the reaction due to chain entanglement and autoacceleration. A crosslinked polymer‐supported RAFT agent was also prepared, and this was used in the preparation of graft polymers with pendant polystyrene chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2956–2966, 2002  相似文献   

17.
A series of end‐functionalized poly(trimethylene carbonate) DNA carriers, characterized by low cationic charge density and pronounced hydrophobicity, is used to study structural effects on in vitro gene delivery. As the DNA‐binding moieties are identical in all polymer structures, the differences observed between the different polymers are directly related to the functionality and length of the polymer backbone. The transfection efficiency and cytotoxicity of the polymer/DNA complexes are thus found to be dependent on a combination of polymer charge density and functionality, highlighting the importance of such structural considerations in the development of materials for efficient gene delivery.

  相似文献   


18.
Reversible addition fragmentation chain transfer polymerization afforded triple hydrogen‐bonding block copolymers (PBA‐b‐PDAD) with well‐controlled molecular weight and molecular weight distributions (1.2–1.4). The complexation via specific hydrogen bonding between these block copolymers in CHCl3 provided an unprecedented approach for the formation of spherical vesicles. Atomic force microscopy and dynamic light‐scattering measurements revealed that the resultant polymeric vesicles were about 100 nm in radius. Triple hydrogen‐bonding interactions between maleimide and PBA‐b‐PDAD resulted in the dissociation of these spherical vesicles, facilitating the guest molecule recognition. The hydrogen‐bonding interaction between maleimide and the PBA‐b‐PDAD was further confirmed by 1H NMR and FTIR spectra. These results indicated that these vesicles of triple hydrogen‐bonding block copolymer could be a potential new vehicle for molecular recognition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1633–1638  相似文献   

19.
Reversible addition–fragmentation chain transfer (RAFT) was applied to the copolymerization of styrene and maleic anhydride. The product had a low polydispersity and a predetermined molar mass. Novel, well‐defined polyolefin‐based block copolymers were prepared with a macromolecular RAFT agent prepared from a commercially available polyolefin (Kraton L‐1203). The second block consisted of either polystyrene or poly(styrene‐co‐maleic anhydride). Furthermore, the colored, labile dithioester moiety in the product of the RAFT polymerizations could be removed from the polymer chain by UV irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3596–3603, 2000  相似文献   

20.
Macromolecular design by interchange of xanthates/reversible addition fragmentation chain transfer polymerization (MADIX/RAFT) of diallyldimethylammonium chloride (DADMAC) using the hydrophobic O‐ethyl‐S‐(1‐methoxycarbonyl) ethyl dithiocarbonate MADIX/RAFT mediating agent, Rhodixan A1, was investigated. Attempts to obtain an efficient control of DADMAC polymerization in a water/ethanol mixture failed because of significant chain transfer to ethanol. The use of a water‐soluble Rhodixan A1‐terminated acrylamide oligomer as the MADIX/RAFT agent enabled the controlled polymerization of DADMAC in water at 50 °C using the cationic azo initiator V‐50. An excellent agreement was found between experimental and theoretical Mn values throughout polymerization and over a broad range of initial concentration of xanthate. Polydispersity indexes (PDIs) at the end of the polymerization were abnormally high for a process showing a linear increase of Mn with monomer conversion (1.8 < PDI < 2.0). This feature was explained by the measurement of a high transfer constant to xanthate (Cx = 18.8 ± 1.6) but a low interchange transfer constant (Cex = 1.5). Nevertheless, poly(acrylamide)–poly(DADMAC) double hydrophilic block copolymers (DHBCs) of controlled Mn and composition could be successfully synthesized for the first time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号