首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with flexible spacers (P‐TLCP‐FS) was synthesized by melt transesterification from p‐acetoxybenzoic acid (p‐ABA), terephthalic acid (TPA), ethylene glycol, and acetylated 2‐(6‐oxid‐6H‐dibenz(c,e) (1,2) oxaphosphorin 6‐yl) 1,4‐benzenediol (AODOPB). The chemical structure and properties of the obtained P‐TLCP‐FS were characterized by Fourier‐transform infrared spectroscopy (FT‐IR), proton nuclear magnetic resonance spectroscopy (1H‐NMR), inherent viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TGA), polarizing light microscopy (PLM), and X‐ray diffraction (XRD) analysis. P‐TLCP‐FS had inherent viscosities of 0.92–1.12 dL/g and exhibited low and wide mesophase temperatures, ranging from 185 to 330 °C, which can match with the processing temperatures of most conventional polymers and high flame retardancy with a limiting oxygen index value of 70% and UL‐94 V‐0 rating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5752–5759, 2008  相似文献   

2.
A novel phosphorus–nitrogen thermotropic liquid crystalline poly(ester‐imide) (PN‐TLCP) derived from p‐acetoxybenzoic acid (ABA), terephthalic acid (TPA), acetylated 2‐(6‐oxide‐6H‐dibenz<c,e><1,2>oxa phosphorin‐ 6‐yl)‐1,4‐dihydroxy phenylene (DOPO‐AHQ) and N,N'‐hexane‐1,6‐diylbis(trimellitimide) was prepared by melt transesterification. The chemical structure, the mesophase behavior, and the thermal properties of the copolymer were investigated with Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), elemental analysis, wide‐angle X‐ray diffraction (WAXD), hot‐stage polarized light microscopy (PLM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). PN‐TLCP exhibited a nematic mesophase with a strong birefringence at a low and broad mesomorphic temperature ranging from 220 to 350°C, an initial flow temperature as low as about 190°C and a glass transition temperature of about 160°C. PN‐TLCP has also good thermal stability, high char residues and excellent flame retardancy (limiting oxygen index, LOI = 71 and UL‐94 V‐0 rating). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A novel phosphorus‐containing thermotropic liquid crystalline copolyester with kinked unit named as poly(hydroxybenzate‐co‐DOPO‐benzenediol dihydrodipheyl ether terephthalate) (PHDDT) was synthesized successfully by melting transesterification from terephthalic acid (TPA), p‐hydroxybenzoic acid (p‐ABH), 2‐(6‐oxid‐6H‐dibenz(c, e) (1,2) oxaphosphorin 6‐yl)1,4‐benzenediol (DOPO‐HQ), and 4,4′‐dihydroxydiphenyl ether (DOP). The chemical structure, the mesophase behavior, and the thermal properties of the copolyesters were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H, 13C, and 31P NMR), wide‐angle X‐ray diffraction, polarizing light microscopy (PLM), differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. Results suggested that PHDDTs exhibited the typical nematic mesophase that occurred at low temperatures and maintained in a broad temperature range from 230 °C to higher than 400 °C, and had low glass transition temperature ranging from 154.5 to 166.9 °C. The novel phosphorus‐containing thermotropic liquid crystalline copolyester will have a potential application in preparing various in situ reinforced polymer materials with excellent mechanical properties and flame retardancy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4703–4709, 2009  相似文献   

4.
Novel polyesters from 2,5‐furandicarboxylic acid or 2,5‐dimethyl‐furandicarboxylate and 2,3‐butanediol have been synthesized via bulk polycondensation catalyzed by titanium (IV) n‐butoxide, tin (IV) ethylhexanoate, or zirconium (IV) butoxide. The polymers were analyzed by size exclusion chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FTIR), matrix‐assisted laser ionization‐desorption time‐of‐flight mass spectrometry, electrospray ionization time‐of‐flight mass spectrometry, electrospray ionization quadruple time‐of‐flight mass spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Fully bio‐based polyesters with number average molecular weights ranging from 2 to 7 kg/mol were obtained which can be suitable for coating applications. The analysis of their thermal properties proved that these polyesters are thermally stable up to 270–300 °C, whereas their glass transition temperature (Tg) values were found between 70 and 110 °C. Furthermore, a material was prepared with a molecular weight of 13 kg/mol, with a Tg of 113 °C. This high Tg would make this material possibly suitable for hot‐fill applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A series of new polyesters was prepared from terephthaloyl (or isophthaloyl) chloride acid with various cardo bisphenols on solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.49 dL · g−1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, and o‐chlorophenol. The polyesters containing cardo groups including diphenylmethylene, tricyclo[5.2.1.02,6]decyl, tert‐butylcyclohexyl, phenylcyclohexyl, and cyclododecyl groups exhibited better solubility than bisphenol A–based polyesters. These polymers showed glass transition temperatures (Tg's) between 185 °C and 243 °C and decomposition temperatures at 10% weight loss ranging from 406 °C to 472 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4451–4456, 2000  相似文献   

6.
A new series of rigid polyesters and semiflexible polyethers were synthesized from 4,4″‐dihydroxy‐5′‐phenyl or anthracenyl‐m‐terphenyl. The polymers were characterized by viscometry, Fourier transform infrared, NMR, X‐ray, differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, ultraviolet–visible, and luminescence spectroscopy. The polyesters were amorphous, whereas some of the polyethers showed a low degree of crystallinity. All the polymers displayed an enhanced solubility even in 1,1,2,2‐tetrachloroethane and tetrahydrofuran. The glass‐transition temperatures were 123–146 °C for the polyesters and 45–117 °C for the polyethers. The polymers were stable up to 213–340 °C and afforded anaerobic char yields of 36–62% at 800 °C. Their optical properties were investigated both in solution and in the solid state. They showed ultraviolet fluorescence, violet‐blue fluorescence, or both with emission maxima at 333–487 nm. The polymers with anthracenyl pendent groups exhibited higher fluorescence quantum yields and emission maxima redshifted compared with the corresponding polymers with phenyl pendent groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2381–2391, 2000  相似文献   

7.
Novel biodegradable polyesters, such as poly(ethylene sebacate) (PESeb), poly(propylene sebacate) (PPSeb), and poly(butylene sebacate) (PBSeb), were synthesized and studied with respect to melting behavior, crystallization kinetics, and enzymatic hydrolysis. PESeb and PPSeb showed multiple melting behavior. Wide angle X‐ray diffractometry measurements at various temperatures, standard, step‐scan, and high‐rate differential scanning calorimetry methods were applied to elucidate the appearance of multiple endotherms in heating scans, which was interpreted in the context of partial melting‐recrystallization and final melting. PBSeb did not show any multiple melting behavior but only a weak tendency for recrystallization on heating. The melting temperatures of PESeb, PPSeb, and PBSeb were measured equal to 78, 57, and 71 °C, respectively. The equilibrium melting points were estimated to be Tm° = 90.2, 69.9, and 77.4 °C for PESeb, PPSeb, and PBSeb, while the corresponding enthalpy of fusion values were found to be ΔHf = 170 ± 10, 140 ± 10, and 155 ± 10 J/g, respectively. The polyesters showed fast crystallization rates under both isothermal and nonisothermal conditions. Crystallization kinetics was thoroughly investigated using macrokinetic models and isoconversional analysis. Enzymatic hydrolysis rate in the presence of lipases Rhizopus delemar and Pseudomonas cepacia was found to be fast for PPSeb, whereas PESeb and PBSeb showed slow rates and comparable with those of PCL. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 672–686, 2010  相似文献   

8.
Polyesters PEs containing high content of fluorene units in their backbones were synthesized from 9,9‐diarene‐substituted fluorene diols ( 1 ) and fluorene‐based diacid chlorides ( 2 ) by high temperature polycondensation at 185 °C in diphenyl ether. The molecular weights of the polyesters PE1‐PE5 were in a range of Mw 25,000–165,000. The polyesters displayed their high thermostability: the glass transition temperatures (Tg) by differential scanning calorimetry analysis ranged from 109 to 217 °C, while the 10% weight loss temperatures (Td10) measured by thermogravimetric analysis were over 400 °C in nitrogen and 395 °C in air. The polyesters had good solubility in most common organic solvents such as chloroform and toluene and gave tough, transparent and flexible cast films. The transmittance of the films was over 80% in the wavelength range from 450 to 700 nm in any PEs . The PEs exhibited high refractive index values around 1.65, while they had very low degree of birefringence. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2549–2556, 2008  相似文献   

9.
Throughout this work, the synthesis, thermal as well as proton conducting properties of acid doped heterocyclic polymer were studied under anhydrous conditions. In this context, poly(1‐vinyl‐1,2,4‐triazole), PVTri was produced by free radical polymerization of 1‐vinyl‐1,2,4‐triazole with a high yield. The structure of the homopolymer was proved by FTIR and solid state 13C CP‐MAS NMR spectroscopy. The polymer was doped with p‐toluenesulfonic acid at various molar ratios, x = 0.5, 1, 1.5, 2, with respect to polymer repeating unit. The proton transfer from p‐toluenesulfonic acid to the triazole rings was proved with FTIR spectroscopy. Thermogravimetry analysis showed that the samples are thermally stable up to ~250 °C. Differential scanning calorimetry results illustrated that the materials are homogeneous and the dopant strongly affects the glass transition temperature of the host polymer. Cyclic voltammetry results showed that the electrochemical stability domain extends over 3 V. The proton conductivity of these materials increased with dopant concentration and the temperature. Charge transport relaxation times were derived via complex electrical modulus formalism (M*). The temperature dependence of conductivity relaxation times showed that the proton conductivity occurs via structure diffusion. In the anhydrous state, the proton conductivity of PVTri1PTSA and PVTri2PTSA was measured as 8 × 10?4 S/cm at 150 °C and 0.012 S/cm at 110 °C, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1016–1021, 2010  相似文献   

10.
As a novel toughening agent, thermotropic liquid crystalline polymers (TLCPs) possess excellent properties of high strength, high modulus, low expanding coefficient, and high thermal stability. In this study, a thermotropic liquid crystalline poly(ester-imide) derived from N,N’-hexane-1,6-diylbis(tri-millitimide) (IA6), p-hydroxylbenzoic acid (PHB), and 4,4’-dihydroxybenzophenone (DHBP) was synthesized by the Higashi's direct polycondensation method. The structure and properties of the TLCP were studied using Fourier transformed infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetic analyses (TGA), polarized light microscopy (POM), and wide angle X-ray diffraction (WAXD). The results revealed that the synthesized polyester-imide is a nematic TLCP with good thermal stability and its starting decomposition temperature is up to 439°C. Additionally, polymer blends of phenol-formaldehyde (PF) resin with different contents of polyester-imide were prepared and characterized by POM and WAXD. POM results demonstrated that two-step blending is an ideal method for blending TLCP and PF resin. By this method, continuous filamentous stripes can be clearly observed at 230°C for TLCP/PF blend of 10 wt% poly(ester-imide).  相似文献   

11.
In this study, biobased furan dicarboxylate polyesters have been prepared using 2,5‐furandicarboxylic acid (FDCA) and diols with high number of methylene groups (long‐chain diols), namely, 8, 9, 10, and 12. Because of the high boiling points of these diols, a modified procedure of the well‐known melt polycondensation was applied in this work. According to this, the dimethyl ester of FDCA (DMFD) reacted in the first transesterification stage with the corresponding diols forming bis‐hydroxy‐alkylene furan dicarboxylates (BHFD). In the second stage, the BHFD reacted with DMFD again at temperatures of 150–170 °C (for 4–5 h), and in the final stage, the temperature was raised to 210–230 °C (vacuum was applied for 2–3 h). The molecular weight of the polyesters and the content of oligomers, as was verified by gel permeation chromatography analysis, depend on the polycondensation time and temperature. The chemical structure of the polyesters was verified from 1H NMR spectroscopy. All the polymers were found to be semicrystalline, with melting temperatures from 69 to 140 °C depending on the diol used. In addition, the mechanical properties also varied with the type of diol. The higher values were observed for poly(octylene 2,5‐furanoate), whereas the lowest values were observed for poly(dodecylene 2,5‐furanoate) with the higher number of methylene groups in its repeating unit. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2617–2632  相似文献   

12.
A series of phosphorous-containing aliphatic polyesters were synthesized by high-temperature solution condensation of 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene (III) with various aromatic acid chlorides in o-dichlorobenzene. All polyesters are amorphous and readily soluble in many organic solvents such as DMAc, NMP, DMSO, and o-dichlorobenzene at room temperature or upon heating. These polyesters are thermally quite stable. The glass transition temperatures of these aliphatic polyesters ranged from 126.6 to 162.2°C. The degradation temperatures (Td onset) in nitrogen ranged from 424 to 448°C, and the char yields at 700°C are 20–32%. The activation energies of degradation ranged from 160.9 to 226.0 kJ/mol. The LOIs of these polyesters ranged from 36 to 43. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3051–3061, 1998  相似文献   

13.
A series of novel phosphorus‐containing polyesterimides were prepared from diols—a mixture of a new aromatic phosphorus‐containing bisphenol, namely 1,4‐bis[N‐(4‐hydroxyphenyl)phthalimidyl‐5‐carboxylate]‐2‐(6‐oxido‐6H‐dibenz<c,e><1,2>oxaphosphorin‐6‐yl)‐naphtalene, with aliphatic diols such as 1,3‐propanediol, 1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, and 1,12‐dodecanediol—and an aromatic diacid chloride containing two preformed ester groups, namely terephthaloyl‐bis‐(4‐oxibenzoyl‐chloride), via high‐temperature polycondensation in o‐dichlorobenzene. The structures of monomers and polymers were verified by means of Fourier transform infrared (FTIR) spectroscopy and 1H NMR spectroscopy. The molar ratio of aromatic bisphenol to aliphatic diol was varied to generate a series of copolyesterimides with tailored physicochemical properties, structure–properties relationships being established. The effect of the phosphorus content on the thermal properties and the flame retardancy was evaluated by means of thermogravimetric analysis (TGA), TGA–FTIR, and scanning electron microscopy. The polymers were stable up to 340 °C showing a 5% weight loss in the range of 340–395 °C and a 10% weight loss in the range of 370–415 °C. The char yields at 700 °C were in the range of 13.6–38% increasing with the content of phosphorus‐containing bisphenol. The effect of the aliphatic content on the liquid crystalline behavior was investigated by polarized light microscopy, differential scanning calorimetry, and X‐ray diffraction. The transition temperatures from crystal to liquid crystalline melt were in the range of 209–308 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A new series of thermotropic liquid‐crystalline (LC) polyesters were prepared from a diacyl chloride derivative of 4,4′‐(terephthaloyldioxy)‐di‐4‐phenylpropionic acid (PTP) and glycols with a different number of methylene groups (n) [HO(CH2)n OH, n = 6–10, 12] by high‐temperature solution polycondensation in diphenyl oxide. PTP6/10 and PTP6/hydroquinone (H) LC copolyesters were also prepared according to a similar procedure. The chemical structure, LC, phase‐transition behaviors, thermal stability, and solubility were characterized by elemental analysis, Fourier transform infrared spectroscopy, 1H and 13C NMR spectra, differential scanning calorimetry (DSC), thermogravimetric analysis, and a polarizing light microscope. The melting and isotropization temperatures decreased in a zigzag manner as the number of n increased. All of the polyesters formed a nematic phase with the exception of PTP8. The temperature ranges of the mesophase (ΔT) were much wider for the polyesters with an odd number of n's than those with an even number. ΔT increased markedly for the PTP6/10 and PTP6/H copolyesters. The in vitro degradations of the polymers were ascertained by enzymatic hydrolysis and alkaline hydrolysis. The model compound, PTP dihexylester, was synthesized and found to be degraded into terephthalic acid, 3‐(4‐hydroxyphenyl)propionic acid, and 1‐hexanol by Rhizopus delemar lipase, but PTPn homopolyesters and PTP6/10 and PTP6/H copolyesters were resistant to Rhizopus delemar hydrolysis. They were degradable in a sodium hydroxide buffer solution of pH 12 at 60 °C, depending on the number of n's and the copolymer composition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3043–3051, 2001  相似文献   

16.
This research aims to produce lignin‐based biodegradable polyesters with improved thermal quality. A series of aliphatic polyesters with lignin‐based aromatic side groups were synthesized by conventional melt‐polycondensation. Decent molecular weight (21–64 kg mol?1) was achieved for the polymerizations. The molecular structures and thermal and mechanical properties of the obtained polyesters were characterized. As a result, the obtained polyesters are all amorphous, and their glass‐transition temperature (Tg) depends on the size of the pendant aromatic group (31–51 °C). Furthermore, according to the TGA results, the thermal decomposition temperatures of the polyesters are all above 390 °C, which make them superior compared with commercial biodegradable polyesters like polylactic acid or polyhydroxyalkanoates. Finally, rheological characteristics and enzymatic degradation of the obtained polyesters were also measured. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2314–2323  相似文献   

17.
Five‐member cyclic dithiocarbonates were synthesized by the reactions of carbon disulfide with benzoic, p‐anisic, p‐chlorobenzoic, 1‐naphthalenecarboxylic, p‐nitrobenzoic, and p‐(tert‐butyl)benzoic glycidyl esters, and their cationic ring‐opening polymerizations were carried out with methyl trifluoromethane sulfonate and trifluoromethane sulfonic acid as initiators at room temperature to 80 °C. Polymers with number‐average molecular weights of 3400–24,900 were obtained in high yields, and their structures were estimated by NMR and IR spectroscopy. The monomers showed a clear difference in the polymerization rate according to the substituents. The rate of polymerization decreased in the order of p‐chlorobenzoic ≥ benzoic > 1‐naphthalenecarboxylic > p‐nitro‐benzoic > ptert‐butylbenzoic > p‐anisic. The data of the reaction kinetics, NMR studies, and molecular orbital calculations proved a plausible mechanism involving the participation of p‐substituted benzoyloxymethyl groups to stabilize the cationic propagating end. The polymers showed decomposition temperatures with 5% weight loss ranging from 200 to 260 °C. No glass‐transition temperatures for the polymers were observed below 200 °C by differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3967–3980, 2001  相似文献   

18.
Melt‐processable liquid‐crystalline terpolyesters of 4‐hydroxyphenylacetic acid (HPAA) and 3‐(4‐hydroxyphenyl)propionic acid (HPPA) with terephthalic acid and 2,6‐naphthalene diol were synthesized by one‐step acidolysis melt polycondensation followed by postpolymerization and were characterized with viscosity studies, Fourier transform infrared (FTIR) and NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy, and wide‐angle X‐ray diffraction. The melting behaviors and liquid‐crystalline transition temperatures of the terpolyesters were dependent on the composition of the HPAA/HPPA content. The transition temperatures of the polyesters could be effectively reduced by the introduction of an even number of built‐in short methylene spacers in combination with the 2,6‐naphthalene offset structure. A terpolyester with an HPPA content of 33% (NTP33) showed optimum properties for the glass‐transition temperature, around 71 °C, and the melting temperature, near 240 °C, with a Schlieren nematic texture. The polymer showed excellent flow behavior in a Brabender plasticorder. It was also thermally stable up to 400 °C. NTP33 showed 2.5% in vitro hydrolytic degradation in buffer solutions of pH 10 at 60 °C after 540 h. Considerable enzymatic degradation was also observed with porcine pancreas lipase/buffer solutions in comparison with Candida rugosa lipase after 60 days. The degradation was also followed with FTIR, DSC, and TGA. Apart from the temperature and pH of the buffer solution, several structural parameters, such as the aromatic content, crystallinity percentage, and composition of the polymer, affected the degradation behavior. FTIR studies indicated the involvement of chain scission during degradation. Scanning electron microscopy studies further showed that surface erosion also played a major role in the degradation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1845–1857, 2002  相似文献   

19.
A new phosphinated acetoxybenzoic acid, 1‐(4‐acetoxyphenyl)‐1‐(4‐carboxylphenyl)‐1‐(6‐oxido‐6H‐dibenz<c,e><1,2> oxaphosphorin‐6‐yl)ethane (3), was prepared by a three‐step procedure. Phosphinated copolyesters based on the acidolysis and polycondensation of (3) with poly(ethylene terephthalate) (PET) were prepared. The crystallinity of copolyesters decreased gradually with the content of (3), as shown in wide‐angle X‐ray diffractograms and differential scanning calorimetry thermograms. Dynamic mechanical analysis and thermal mechanical analysis show Tg increased with the content of (3). UL‐94 flame retardant test shows that the flame resistance of PET was enhanced with the content of (3), and a copolyester with UL‐94 V‐0 grade can be achieved with a phosphorus content as low as 1.43 wt %. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 424–434  相似文献   

20.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号