首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aromatic sulfur‐containing diamine 4,4′‐thiobis[(p‐phenylenesulfanyl) aniline] (3SDA) was synthesized and polymerized with a sulfur‐containing dianhydride 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA) and three nonsulfur aromatic tetracarboxylic dianhydrides, respectively to afford four poly(amic acid)s (PAAs) with the inherent viscosities of 0.54–1.04 dL/g. Flexible and tough polyimide (PI) films obtained from the PAA precursors showed good thermal, mechanical, and optical properties. The glass transition temperatures (Tgs) of the PIs ranged from 179.1–227.2 °C determined by differential scanning calorimetry (DSC), and 173.8–227.3 °C by dynamic mechanical analysis (DMA), depending on the dianhydride used. The 10% weight loss temperatures were in the range of 500–536 °C, showing high intrinsic thermal‐resistant characteristics of the PI films. The PI films also showed good optical transparency above 500 nm, which agreed well with the calculated absorption spectra using the time‐dependent density functional theory. The average refractive indices (nav) measured at 632.8 nm were 1.7191–1.7482, and the in‐plane/out‐of‐plane birefringences (Δn) were 0.0068–0.0123. The high refractive indices originate from the high sulfur contents, good molecular packing, and the absence of bulky structures. The relatively small birefringence mainly results from the flexible thioether linkages structures of the diamine. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5606–5617, 2007  相似文献   

2.
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008  相似文献   

3.
New sulfur‐containing aromatic diamines with methyl groups at the ortho position of amino groups have been developed to prepare highly refractive and transparent aromatic polyimides (PIs) in the visible region. All aromatic PIs derived from 4,4′‐thiobis[2″‐methyl‐4″‐(p‐phenylenesulfanyl)aniline ( 2 ), 4,4′‐thiobis[2,″6″‐dimethyl‐4″‐(p‐phenylenesulfanyl)aniline ( 5 ), and aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride ( 6 ) were prepared via a two‐step polycondensation. All PIs showed good thermal properties, such as 10% weight loss temperature in the range of 497–500 °C and glass transition temperatures above 196 °C. In addition, the PIs showed good optical properties, such as optical transparency above 75% at 450 nm with a 10‐μm film thickness, high refractive indices ranging from 1.7135 to 1.7301, and small in‐plane/out‐of‐plane birefringences between 0.0066 and 0.0076. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 656–662, 2010  相似文献   

4.
This article concerns the hydrosilylation polyaddition of 1,4‐bis(dimethylsilyl)benzene ( 1 ) with 4,4′‐diethynylbiphenyl, 2,7‐diethynylfluorene ( 2b ), and 2,6‐diethynylnaphthalene with RhI(PPh3)3 catalyst. Trans‐rich polymers with weight‐average molecular weights (Mw's) ranging from 19,000 to 25,000 were obtained by polyaddition in o‐Cl2C6H4 at 150–180 °C, whereas cis‐rich polymers with Mw's from 4300 to 34,000 were obtained in toluene at 0 °C–r.t. These polymers emitted blue light in 4–81% quantum yields. The cis polymers isomerized into trans polymers upon UV irradiation, whereas the trans polymers did not. The device having a layer of polymer trans‐ 3b obtained from 1 and 2b demonstrated electroluminescence without any dopant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2774–2783, 2004  相似文献   

5.
The polyaddition of bis(oxetane)s 1,4‐bis[(3‐ethyl‐3‐oxetanylmethoxymethyl)]benzene (BEOB), 4,4′‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]benzene (4,4′‐BEOBP), 1,4‐bis[(3‐ethy‐3‐oxetanyl)methoxy] ‐benzene (1,4‐BEOMB), 1,2‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]benzene (1,2‐BEOMB), 4,4‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (4,4′‐BEOMB), 3,3′,5,5′‐tetramethyl‐[4,4′‐bis(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (TM‐BEOBP) with active diesters di‐s‐phenylthioterephthalate (PTTP), di‐s‐phenylthioisoterephthalate (PTIP), 4,4′‐di(p‐nitrophenyl)terephthalate (NPTP), 4,4′‐di(p‐nitrophenyl)isoterephthalate (NPIP) were carried out in the presence of tetraphenylphosphonium chloride (TPPC) as a catalyst in NMP for 24 h, affording corresponding polyesters with Mn's in the range 2200–18,200 in 41–98% yields. The obtained polymers would soluble in common organic solvents and had high thermal stabilities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1528–1536, 2004  相似文献   

6.
A series of new organic‐soluble polyamides (PAs) bearing flexible thioether linkages and heteroaromatic thiazole units were synthesized from a novel thioether‐bridged diamine monomer (DA) and various commercially available aromatic dicarboxylic acids (1–5) via a direct polycondensation method. The resulting polymers were obtained in high yields and possessed inherent viscosities in the range of 0.41–0.80 dL g?1. All of the polymers were amorphous in nature, exhibited good solubility and could be easily dissolved in amide‐type polar aprotic solvents and even dissolved in less polar solvents (e.g., tetrahydrofuran, pyridine, and acetone). They showed excellent thermal stability with glass transition temperatures between 207 and 239 °C and 10% weight loss temperatures in excess of 424 °C in nitrogen and 469 °C in air atmosphere. The optical transmittances of the PA films at 450 nm were higher than 85% for the thickness of ~10 μm. The combination of the thiazole moieties and flexible thioether linkages provided PAs with high average refractive indices (nav) of 1.7414–1.7542 and low birefringences (Δn) of 0.0061–0.0087 at 632.8 nm. In particular, the nav of PA‐5 derived from DA and 2,2′‐dithiodibenzoic acid exhibited the highest refractive index (1.7542) in the high refractive index PAs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3505–3515  相似文献   

7.
High‐refractive‐index polyamides (PAs) are developed by incorporation of sulfide‐ or sulfoxide linkages and chlorine substituents. The PAs are synthesized through the polycondensation of two novel diamine monomers, 2,2′‐sulfide‐bis(4‐chloro‐1‐(4‐aminophenoxy) phenyl ether (3a) and 2,2′‐sulfoxide‐bis(4‐chloro‐1‐(4‐aminophenoxy) phenyl ether (3b), with various aromatic diacids (a–e). The ortho‐sulfide or sulfoxide units, pendant chlorine groups, and flexible ether linkages in the diamine monomers endowed the obtained PAs with excellent solubilities in organic solvents. The resulting PAs showed high thermal stability, with 10% weight loss temperatures exceeding 415 °C under nitrogen and 399 °C in air atmosphere. The combination of chlorine substituents, sulfide or sulfoxide linkages, and ortho‐catenated structures provided polymers with high transparency along with high refractive index values of up to 1.7401 at 632.8 nm and low birefringences (<0.0075). The structure–property relationships of the analogous PAs containing sulfide or sulfoxide linkages were also studied in detail by comparing the results. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2867–2877  相似文献   

8.
A series of aromatic polyimides (PIs) containing pyridazine or pyrimidine in their main chains has been developed. All of the PIs were prepared from newly synthesized diamines, 3,6‐bis(4‐aminophenylenesulfanyl)pyridazine (APP), 4,6‐bis(4‐aminophenylenesulfanyl)pyrimidine (APPM) and aromatic dianhydrides, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA) and 4,4′‐oxydiphthalic anhydride (ODPA) via the conventional two‐step polycondensation. The PIs showed good thermal stability with 10% weight loss at temperatures above 450 °C and glass transition temperatures above 190 °C. Films with a 10‐μm thickness exhibited good optical transparency above 80% at 500 nm, high refractive indices ranging from 1.7218 to 1.7499, and low birefringence between 0.0066 and 0.0102. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4886–4984, 2009  相似文献   

9.
A new dialdehyde monomer, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) benzaldehyde, was prepared; it led to a number of novel poly‐Schiff bases in reactions with different diamines, such as 4,4′‐diaminidiphenyl ether, 4,4′‐(isopropylidine) bis(p‐phenoxy) dianiline, 4,4′‐(hexafluoroisopropylidine) bis(p‐phenoxy) dianiline, and benzidine. The polymers were characterized with viscosity measurements, nitrogen analyses, and IR and 1H NMR spectroscopy. These poly‐Schiff bases showed good thermal stability up to 491 °C for 10% weight loss in thermogravimetric analysis under air and high glass‐transition temperatures up to 215 °C in differential scanning calorimetry. These polymers were soluble in a wide range of organic solvents, such as CHCl3, dimethylformamide (DMF), dimethyl sulfoxide, and 1‐methyl‐2‐pyrrolidon (NMP), and were insoluble in toluene and acetone. Thin films of these polymers cast from DMF exhibited tensile strengths up to 38 MPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 383–388, 2001  相似文献   

10.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

11.
Poly(arylene thioether)s ( PTEs ) containing 9,9′‐spirobifluorene moieties were synthesized in high yields from 9,9′‐spirobifluorene‐2,2′‐bis(N,N‐dimethylcarbamothioate) 4 as the masked dithiol and various difluoroarenes as electrophilic monomers. All PTEs showed high thermal stability: The 10% weight loss temperature as evaluated by thermogravimetric analysis was over 470 °C under both nitrogen and air atmospheres. The glass transition temperature estimated by DSC was in the range 210–270 °C. The PTEs showed high solubility in ordinary organic solvents, such as CHCl3, NMP, and THF. Most PTEs exhibited remarkably high refractive indices ranging from 1.69 to 1.73 at 587.6 nm, whereas no or little birefringence was observed for the PTEs . © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4192–4199, 2010  相似文献   

12.
The synthesis and characterization of the fluoropolymers poly 1a – 1d and poly 2a – 2d with pendant hydroxyl groups were examined. The polyaddition of bis(epoxide)s [2,2′‐bis(4‐glycidyletherphenyl)hexafluoropropane and bisphenol A diglycidyl ether] with dicarboxylic acids (tetrafluoroterephthalic acid and terephthalic acid) and diols [2,2′‐bis(4‐hydroxyphenyl)hexafluoropropane, 2,2′,3,3′,5,5′,6,6′‐octafluoro‐4,4′‐biphenol, 1,4‐bis(hexafluorohydroxyisopropyl)benzene, and 1,3‐bis(hexafluorohydroxyisopropyl)benzene] was carried out at 50–100 °C for 6–48 h in the presence of quaternary onium salts (tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylphosphonium bromide, and tetrabutylphosphonium chloride; 2.5 mol %) as catalysts in dimethyl sulfoxide, N‐methylpyrrolidone, dimethylformamide, dimethylacetamide, dioxane, diglyme, o‐dichlorobenzene, chlorobenzene, and toluene to afford the corresponding polymers, poly 1a – 1d and poly 2a – 2d , with number‐average molecular weights of 11,000–59,400 in 45–97% yields. The solubility of the obtained polymers was good, and their thermal stability might be assumed from their structures. A linear relationship was observed between the contents of the fluorine atoms and the refractive indices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1395–1404, 2002  相似文献   

13.
Hydrosilylation polymerizations of 1,1‐dimethyl‐2,5‐bis(4‐ethynylphenyl)‐3,4‐diphenylsilole with aromatic silylhydrides including 1,4‐bis(dimethylsilyl)benzene, 4,4′‐bis(dimethylsilyl)biphenyl, 2,5‐bis(dimethylsilyl)thiophene, and 2,7‐bis(dimethylsilyl)‐9,9‐dihexylfluorene in the presence of Rh(PPh3)3Cl catalyst in refluxed tetrahydrofuran afford a series of silole‐containing poly(silylenevinylene)s. Under optimum condition, the alkyne polyhydrosilylation reactions progress efficiently and regioselectively, yielding polymers with high molecular weights (Mw up to 95,300) and good stereoregularity (E content close to 99%) in high yields (up to 92%). The polymers are processable and thermally stable, with high decomposition temperatures in the range of 420?449 °C corresponding to 5% weight loss. They are weakly fluorescent in the solution state but become emissive in the aggregate and film states, demonstrating their aggregation‐enhanced emission characteristics. The explosive sensing capabilities of the polymers are examined in both solution and aggregate states. The emissions of the polymers aggregates in aqueous mixture are quenched more efficiently by picric acid in an exponential pattern with high quenching constants (up to 27,949 L mol?1), suggesting that the polymers aggregates are sensitive chemosensors for explosive detection. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Two fluorinated aromatic bis(o‐aminophenol)s, 1,1‐bis(3′‐amino‐4′‐hydroxyphenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane (6FAP) and 1,1‐bis(3′‐amino‐4′‐hydroxyphenyl)‐1‐(3′,5′‐ditrifluoromethylphenyl)‐2,2,2‐trifluoroethane (9FAP) were synthesized, which were allowed to polycondense with aromatic diacyl chlorides to afford the fluorinated aromatic polybenzoxazoles (PBOs) via a conventional two‐step procedure in which the low‐temperature solution polycondensation process was first performed to yield poly(o‐hydroxyamide)s (PHAs) followed by the thermal cyclodehydration to give the PBOs. Experimental results indicated that the PHAs had inherent viscosities in the range of 0.29–0.68 dL/g, showing excellent solubility in organic solvents. The PHAs could be thermally cyclodehydrated into the corresponding PBOs at 260–370 °C. The obtained PBOs exhibited enhanced glass‐transition temperature but decreased solubility with respect to the PHAs. The PBOs showed glass‐transition temperatures in the range of 315–337 °C and excellent thermal stabilities with 5% original weight‐loss temperatures (T5) of >513 °C. Additionally, the PBO films had average refractive index of 1.5298–1.5656, birefringence of 0.0051–0.0092, and low dielectric constants of 2.57–2.70. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
New high temperature polyaryleneetherketone triphenylphosphine oxides incorporating trans‐1,4‐cyclohexane, 1,3‐adamantane, and 4,9‐diamantane structural units were synthesized by the base‐promoted polymerization reaction between 4,4′‐difluorotriphenylphosphine oxide and the novel dihydroxy monomers trans‐1,4‐bis(4‐hydroxybenzoyl)cyclohexane, 1,3‐bis(4‐hydroxybenzoyl)adamantane, and 4,9‐bis(4‐hydroxybenzoyl)diamantane. The monomers were synthesized in a good yield by a two‐step procedure involving the Friedel–Crafts acylation of anisole by the diacid chlorides trans‐1,4‐cyclohexanedicarbonyl chloride, 1,3‐adamantanedicarbonyl chloride, and 4,9‐diamantanedicarbonyl chloride, followed by demethylation with pyridine hydrochloride. The polymers, which could be processed into tough, free standing films from organic solvents, exhibited high Tg's in the range of 192–239° as well as thermooxidative stabilities (5% weight loss in air) in the range of 445–490°. Preliminary results from a UV–visible spectroscopic study of dilute solutions of the polymers in chloroform showed absorption maxima in the 263–274 nm region and transparency to spectral radiation in the 300–800 nm range, indicating that these triphenylphosphine oxide polymers could have potential applications for space thermal control coatings. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6134–6142, 2004  相似文献   

16.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

17.
A series of organosoluble aromatic polyimides (PIs) was synthesized from 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐4,7‐methanohexahydroindan (3) and commercial available aromatic dianhydrides such as 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA), 4,4′‐sulfonyl diphthalic anhydride (SDPA), or 2,2′‐bis(3,4‐dicarboxyphenyl) hexafluoropropanic dianhydride (6FDA). PIs (IIIc–f), which were synthesized by direct polymerization in m‐cresol, had inherent viscosities of 0.83–1.05 dL/g. These polymers could easily be dissolved in N,N′‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide (DMF), pyridine, m‐cresol, and dichloromethane. Whereas copolymerization was proceeded with equivalent molar ratios of pyromellitic dianhydride (PMDA)/6FDA, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA)/6FDA, or BTDA/SDPA, or ½ for PMDA/SDPA, copolyimides (co‐PIs), derived from 3 and mixed dianhydrides, were soluble in NMP. All the soluble PIs could form transparent, flexible, and tough films, and they showed amorphous characteristics. These films had tensile strengths of 88–111 MPa, elongations at break of 5–10% and initial moduli of 2.01–2.67 GPa. The glass transition temperatures of these polymers were in the range of 252–311°C. Except for IIIe, the 10% weight loss temperatures (Td) of PIs were above 500°C, and the amount of carbonized residues of the PIs at 800°C in nitrogen atmosphere were above 50%. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1681–1691, 1999  相似文献   

18.
A highly refractive and transparent aromatic polyimide (PI) containing a selenophene unit has been developed. The PI was prepared by a two‐step polycondensation procedure from 2,5‐bis(4‐aminophenylenesulfanyl)selenophene (APSP) and 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), and shows high thermal stabilities, such as a relatively high‐glass transition temperature of 189 °C and 5% weight loss temperature (T5%) of 418 °C. The optical transmittance of the PI film at 450 nm is higher than 50%. The selenophene unit provides the PI with a refractive index of 1.7594, which is higher than corresponding PIs containing a thiophene or a phenyl unit because of the high polarizability per unit volume of the selenium atom. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4428–4434, 2009  相似文献   

19.
A series of poly(o‐hydroxy amide)s having both ether and sulfone linkages in the main chain were synthesized via the low‐temperature solution polycondensation of 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoyl chloride and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoyl chloride with three bis(o‐aminophenol)s including 4,4′‐diamino‐3,3′‐dihydroxybiphenyl, 3,3′‐diamino‐4,4′‐dihydroxybiphenyl, and 2,2‐bis(3‐diamino‐4‐hydroxyphenyl)hexafluoropropane. Subsequent thermal cyclodehydration of the poly(o‐hydroxy amide)s afforded polyethersulfone benzoxazoles. Most of the poly(o‐hydroxy amide)s were soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone; however, the polybenzoxazoles without the hexafluoroisopropylidene group were organic‐insoluble. The polybenzoxazoles exhibited glass‐transition temperatures (Tg) in the range of 219–282 °C by DSC and softening temperatures (Ts) of 242–320 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 450 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 474–593 °C in air and 478–643 °C in nitrogen. The methyl‐substituted polybenzoxazoles had higher Tg's but lower Ts's and initial decomposition temperatures compared with the corresponding unsubstituted polybenzoxazoles. For a comparative purpose, the synthesis and characterization of a series of sulfonyl polybenzoxazoles without the ether group that derived from 4,4′‐sulfonyldibenzoyl chloride and bis(o‐aminophenol)s were also reported. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2262–2270, 2001  相似文献   

20.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号