首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Hydrogen is an important reducing agent for transition metal oxides, however, details on reaction pathways are often unknown. Therefore, the reduction of CrO2 and TlPd3O4 was investigated by in situ X-ray powder diffraction and subsequent Rietveld analysis. CrO2 is reduced by hydrogen gas (0.3 MPa) starting at 180 °C according to 2 CrO2 + H2 → 2 CrOOH. The reaction is complete at 250 °C and there are no signs for intermediates or non-stoichiometry. In nitrogen atmosphere the reaction TlPd3O4 → TlPd3 + 2 O2 occurs without intermediates in one step starting at about 670 °C. Thermal volume expansion is determined to be V(TlPd3O4) = 880.7(1) 106 pm3 + 1.64(7) 104 T pm3/K + 10.7(9) T2 pm3/K2 and V(TlPd3) = 258.6(1) 106 pm3 + 8.5(7) 103 T pm3/K + 2.6(7) T2 pm3/K2 for 25 °C ≤ T ≤ 730 °C. The formation of β-TlPd3H from TlPd3O4 in 0.3 MPa hydrogen gas at 75 °C occurs very fast. Unit cell parameters indicate the occurrence of a metastable α-TlPd3H≈0.2 with a hydrogen-filled ZrAl3 type. Cubic anti-perovskite type β-TlPd3H reacts in air to TlPd3 with a possible hydrogen deficient intermediate β-TlPd3H1–x and hints for remaining hydrogen in the tetragonal ZrAl3 type intermetallic compound. In situ methods thus give a deeper insight in the TlPd3-O2-H2 system with the identification of possible candidates for interesting intermediate phases and more detailed information on thermal stabilities.  相似文献   

2.
The reaction of Te(OH)6 with Ph3SnOH in ethanol leads to the formation of trans‐[(Ph3SnO)4Te(OH)2] ( 1 ). Compound 1 crystallizes triclinic in the space group P\bar{1} with a = 996.6(2) pm, b = 1365.4(3) pm, c = 1368.2(3) pm and α = 71.15(2)°, β = 71.48(2)°, γ = 74.81(3)° (at 220 K). The molecular structure of 1 consists of a tellurium atom, which is coordinated nearly octahedrally by four Ph3SnO units and two hydroxyl groups that are trans to each other. The Te–O bond lengths are in the range of 190.5(2) and 193.7(2) pm. Treatment of 1 with methanol under reflux yields trans‐[(Ph3SnO)2Te(OMe)4] ( 2 ). Compound 2 crystallizes triclinic in the space group P\bar{1} with a = 1012.8(1) pm, b = 1422.4(2) pm, c = 1618.1(2) pm, and α = 100.44(1)°, β = 107.92(1)°, γ = 110.66(1)° (at 220 K). 2 forms centrosymmetric molecules in which the tellurium atom is surrounded nearly octahedrally by four methoxy groups and two trans arranged Ph3SnO units. The Te–O bond lengths of 187.9(3)–194.5(3) pm are similar to those observed in 1 .  相似文献   

3.
The reaction of benzene 1,3,5‐trisulfonic acid (H3BTS) with the hydroxides RE(OH)3 (RE = La, Nd, Sm, Eu) in aqueous solution afforded the sulfonates [La(BTS)(H2O)5] and [RE(BTS)(H2O)4] (RE = Nd, Sm, Eu). Single crystal investigations were performed for the lanthanum and the europium compound, respectively. [La(BTS)(H2O)5] is triclinic [P$\bar{1}$ , Z = 2, a = 783.18(6) pm, b = 1056.94(8) pm, c = 1082.38(8) pm, α = 114.860(2)°, β = 96.655(3)°, γ = 104.402(3)°] whereas [Eu(BTS)(H2O)4] exhibits monoclinic symmetry [P21/n, Z = 4, a = 767.61(5) pm, b = 1730.2(1) pm, c = 1134.06(8) pm, β = 108.375(8)°]. Despite these crystallographic differences, the structural features of the lanthanum and europium compounds are very similar. They show the metal ions connected by BTS anions to layers that are further linked by hydrogen bonds. Interestingly, only two of the three sulfonate groups are connected to rare earth ions, whereas the third remains uncoordinated and acts as acceptor within the hydrogen bonds. According to powder XRD measurements the neodymium and samarium sulfonates are isotypic with the europium compound. The thermal analyses of the compounds show the dehydration in a temperature range between 100 and 300 °C, whereas the decomposition of the organic ligands takes place at temperatures as high as 550 °C. Thus the anhydrous sulfonates are much more stable than comparable salts of trimesic acid. The residues of the thermal decompositions were identified by XRD experiments.  相似文献   

4.
The reactions of Au(OH)3, M2CO3 (M = Li, Na, Rb), and methanesulfonic acid at elevated temperatures in sealed glass ampoules lead to single crystals of M[Au(CH3SO3)4] (M = Li, Na, Rb). In the crystal structures of Li[Au(CH3SO3)4] (tetragonal, I$\bar{4}$ , Z = 2,a = 938.64(2) pm, c = 917.01(3) pm, V = 807.93(4) Å3) and Rb[Au(CH3SO3)4] (tetragonal, P$\bar{4}$ 21c, Z = 2, a = 946.7(1) pm,c = 889.9(1) pm, V = 797.6(2) Å3) the complex aurate anions are linked by the M+ ions in three dimensions. Contrastingly, in the structure of Na[Au(CH3SO3)4] (triclinic, P$\bar{4}$ , Z = 1, a = 540.04(2) pm,b = 863.75(2) pm, c = 973.29(3) pm, α = 72.694(2)°, β = 75.605(2)°, γ = 77.687(2)°, V = 415.05(2) Å3) the complex anions are connected into layers that are further connected by weak hydrogen bonds. The thermal decomposition of Li[Au(CH3SO3)4] was monitored up to 500 °C and leads in a multi‐step process to elemental gold and Li2SO4.  相似文献   

5.
The oxidation of elemental palladium at 100 °C in a mixture of fuming nitric acid and a pyridine‐SO3 complex leads to the anhydrous nitrate Pd(NO3)2 (monoclinic, P21/n, Z=2, a=469.12(3) pm, b=593.89(3) pm, c=805.72(4) pm, β=105.989(3)°, V=215.79(2) Å3). The Pd2+ ions are in square‐planar coordination with four monodentate nitrate groups which are connected to further palladium atoms, leading to a layer structure. The reaction of elemental palladium with a mixture of fuming nitric acid and methanesulfonic acid at 120 °C leads to single crystals of Pd(CH3SO3)2 (monoclinic, P21/n, Z=2, a=480.44(1) pm, b=1085.53(3) pm, c=739.78(2) pm, β=102.785(1)°, V=376.254(17) Å3). Also in this structure the Pd2+ ions are in square‐planar coordination with four monodentate anions; however, the connection to adjacent palladium atoms leads to a chain‐type structure. The thermal decomposition of the compounds has been investigated by means of DSC/TG measurements. Furthermore, IR and Raman spectra have been recorded, and an assignment of the observed vibrational frequencies has been carried out based on theoretical investigations.  相似文献   

6.
Hydrogen Bridges. I. Molecular and Crystal Structure of Phosphonic Acid H3PO3 – X-ray and Neutron Diffraction Studies of the Hydrogen and Deuterium Compounds The structure of phosphonic acid H3PO3 has been redetermined by single crystal neutron diffraction (λ = 104.22 pm) at 15.0 ± 0.1 K yielding lattice parameters {Pna21; Z = 8; a = 716.6(3); b = 1201.3(5); c = 674.3(3) pm} and bond lengths {mean values from two crystallographically independent molecules: P? O 155; P?O 150; P? H 139; O? H 101 pm} of high reliability (R = 0.053). Each molecule is involved in four asymmetric hydrogen bonds (O…H 155 to 160pm; O? H…O 168 to 177°) with either hydroxyl group donating and the phosphoryl fragment acting as a twofold acceptor. Thus a complex, three-dimensional net, consisting of four- and eight-point circuits in a 1:2 ratio, is put up although the molecules are packed in a comparatively simple way to form an almost cubic closest arrangement. An X-ray crystal structure determination (R = 0.032) carried out at 173 ± 3 K for comparison revealed no significant differences and angles between phosphorus and oxygen atoms; an additional comparing neutron diffraction study at 15.0 ± 0.1 K (λ = 131.68 pm; isotropic atomic displacement parameters) of the hydrogen (r = 0.044) and deuterium compounds (R = 0.041) resulted in nearly identical structural models for the two isotopomers.  相似文献   

7.
Rare earth carbodiimide silicates RE2(CN2)(SiO4) with RE = Y, La, and Pr were synthesised by solid state metathesis reactions of RECl3, Li2(CN2), and SiO2 or Li2SiO4, respectively, in silica tubes at 550 °C. All three compounds crystallise with different structures, although all of them represent distorted derivatives of the sodium chloride type structure. The structure of Y2(CN2)(SiO4) was refined monoclinically (C2/m, Z = 2, a = 1301.382(5) pm, b = 377.630(1) pm, c = 527.656(2) pm, β = 93.9816(2) °) from X‐ray powder data. The crystal structure of La2(CN2)(SiO4) was refined in a different monoclinic space group (P21/c, Z = 4, a = 660.3(1) pm, b = 1282.0(2) pm, c = 656.2(1) pm, β = 105.23(2) °), and the structure of Pr2(CN2)(SiO4) was refined triclinically (P\bar{1} , Z = 2, a = 646.7(2) pm, b = 669.2(2) pm, c = 671.8(2) pm, α = 86.18(3) °, β = 73.22(3) °, γ = 74.08(3) °) from X‐ray single crystal data.  相似文献   

8.
We report a new low temperature method for the synthesis of LnNiO3 (Ln = Eu, Gd) at 400 °C under 180 bar oxygen pressure with the flux method. Utilization of the LiCl/KCl flux allowed for a decrease of the reaction temperature from 1000 °C and resulted in the synthesis of pure phase compounds. These materials have been characterized by powder X-ray diffraction and thermogravimetric analysis. LnNiO3 (Ln = Eu and Gd) compounds crystallize in the orthorhombic GdFeO3-type perovskite structure (space group: Pbnm). Both materials decompose to Ln2O3 and NiO at 775 °C under a nitrogen atmosphere and undergo reduction to Ln2O3 and Ni metal (at 385 °C and 340 °C for Eu and Gd, respectively) under a hydrogen atmosphere (10% H2/N2). Attempts to prepare the first T′-type infinite layer compound with Ni2+, EuNiO2, by low temperature reduction of EuNiO3 were unsuccessful.  相似文献   

9.
A powder of the composition 40 mol‐% Er2O3 and 60 mol‐% ZrO2 has been prepared. The anion deficient fluorite related compound Zr3Er4O12 [R\bar{3} : a = 971.79(7) pm and c = 907.976(0) pm] was produced. This precursor was treated with gaseous ammonia at temperatures between 25 and 1200 °C. The reaction was followed in situ by X‐ray diffraction in a high temperature reaction chamber under a constant flow of ammonia. The nitridation of Zr3Er4O12 led to a nitride oxide of the solid‐solution‐type with an apparent composition Zr0.43Er0.57O1.07N0.43 The compound crystallizes isostructural to bixbyite due to vacancy ordering [Ia\bar{3} : a = 1036.37(4) pm]. The reoxidation of the nitride oxide was monitored in DTA/TG experiments exhibiting an almost complete reoxidation to the starting composition except for some inclusions of dinitrogen.  相似文献   

10.
11.
Structure, Twinning, and Properties of Ce4Br3C4 The new compound Ce4Br3C4 can be prepared from Ce metal, CeBr3 and C (3 : 3 : 2) at 1020 °C. It crystallizes in P 1 with a = 422.7(1) pm, b = 1103.4(3) pm, c = 1126.8(2) pm, α = 77.15(3)°, β = 90.13(2)° and γ = 84.42(3)°. The crystals are characteristically twinned, the twin law being (1 0 0, 1/2 –1 0, 0 0 –1). The crystal structure contains puckered layers of edge sharing Ce6C2 octahedra. The mean C–C distance in the C2 units is 133(5) pm. Ce4Br3C4 has at room temperature a specific resistivity of 100 mΩ cm and an effective magnetic moment of 2.55(3) μB (Ce3+).  相似文献   

12.
Sulfates and Hydrogensulfates of Erbium: Er(HSO4)3-I, Er(HSO4)3-II, Er(SO4)(HSO4), and Er2(SO4)3 Rod shaped light pink crystals of Er(HSO4)3-I (orthorhombic, Pbca, a = 1195.0(1) pm, b = 949.30(7) pm, c = 1644.3(1) pm) grow from a solution of Er2(SO4)3 in conc. H2SO4 at 250 °C. From slightly diluted solutions (85%) which contain Na2SO4, brick shaped light pink crystals of Er(HSO4)3-II (monoclinic, P21/n, a = 520.00(5) pm, b = 1357.8(1) pm, c = 1233.4(1) pm, β = 92.13(1)°) were obtained at 250 °C and crystals of the same colour of Er(SO4)(HSO4) (monoclinic, P21/n, a = 545.62(6) pm, b = 1075.6(1) pm, c = 1053.1(1) pm, β = 104.58(1)°) at 60 °C. In both hydrogensulfates, Er3+ is surrounded by eight oxygen atoms. In Er(HSO4)3-I layers of HSO4 groups are connected only via hydrogen bridges, while Er(HSO4)3-II consists of a threedimensional polyhedra network. In the crystal structure of Er(SO4)(HSO4) Er3+ is sevenfold coordinated by oxygen atoms, which belong to four SO42–- and three HSO4-tetrahedra, respectively. The anhydrous sulfate, Er2(SO4)3, cannot be prepared from H2SO4 solutions but crystallizes from a NaCl-melt. The coordination number of Er3+ in Er2(SO4)3 (orthorhombic, Pbcn, a = 1270.9(1) pm, b = 913.01(7) pm, c = 921.67(7) pm) is six. The octahedral coordinationpolyhedra are connected via all vertices to the SO42–-tetrahedra.  相似文献   

13.
The reaction of iridium powder with an excess of selenium and SeBr4 yielded lustrous, vermillion crystals of the mononuclear iridium complex [IrBr3(SeBr2)3]. The transition metal is coordinated octahedrally by three SeBr2 and three bromide ligands with facial or meridional configuration. Three different modifications were obtained under similar conditions: a‐fac‐IrBr3(SeBr2)3, space group P$\bar{1}$ , with a = 789.4(1) pm, b = 830.4(1) pm, c = 1334.4(1) pm, α = 81.634(5)°, β = 84.948(5)°, γ = 67.616(4)°; m‐fac‐IrBr3(SeBr2)3, space group P21/n, with a = 1205.3(1) pm, b = 962.4(1) pm, c = 1383.9(1) pm, β = 91.114(3)°; mer‐IrBr3(SeBr2)3, space group P21/n with a = 859.7(1) pm, b = 1284.3(1) pm, c = 1437.5(1) pm, β = 94.427(3)°. A lower bromine content in the starting composition resulted in shiny, deep‐red crystals of [Se9(IrBr3)2]. X‐ray diffraction on a single‐crystal revealed a tetragonal lattice (space group I41/a) with a = 1245.4(1) pm and c = 2486.8(1) pm at 296(1) K. In the [Se9(IrBr3)2] complex, a crown‐shaped uncharged Se9 ring coordinates two iridium(III) cations as a bridging bis‐tridentate ligand. Three terminal bromide ions complete the distorted octahedral coordination of each transition metal atom.  相似文献   

14.
A novel gas pressure cell for in situ neutron powder diffraction has been developed. It is based on a single crystal sapphire tube as a sample holder, allows a 360° unobstructed access by the neutron beam and has little background contribution. This device was used to study the hydrogenation of α‐MgPd3, which undergoes a hydrogen driven rearrangement from a ZrAl3 to a AuCu3 type structure. Deuterium could be located and a strong preference of [Pd6] voids was found in α‐MgPd3D0.79 under 5 bar and in α‐MgPd3D0.94 under 20 bar deuterium pressure. The crystal structure may be described as a new defect superstructure variant of the NaCl type. In situ thermal analysis under 5 bar hydrogen pressure showed that both the hydrogen uptake of α‐MgPd3, which is complete at temperatures below 450 K, and the transformation to the hydride of cubic β‐MgPd3, starting around 550 K, are exothermic. This completion of the hydrogenation‐dehydrogenation series of MgPd3 suggests, that the rearrangement of the metal structure proceeds by a hydrogen assisted gliding mechanism with a shift vector of [110]. This is also supported by quantum chemical calculations, which show a decohesion of the intermetallic structure upon hydrogenation accompanied by the appearance of Pd–H bonding interactions.  相似文献   

15.
Radical copolymerization of N-(azo dye) maleimide or N-(substituted phenyl) maleimide and styrene were carried out using 2,2′-azobis-isobutyronitrile as an initiator in THF at 60°C. These copolymers exhibit high solubility in most of the organic solvents and excellent thermal stability up to 280°C under nitrogen atmosphere. The copolymer films which were heated at 200–240°C under high corona field exhibit d33 = 3–5 pm/V, in the Maker-fringe measurement. Experimental results also showed that the copolymer with azo dye as chromophore did not decay in second harmonic response even at 130°C. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The crystal structure of the ζ2‐phase Al3Cu4‐δ was determined by means of X‐ray powder diffraction: a = 409.72(1) pm, b = 703.13(2) pm, c = 997.93(3) pm, space group Imm2, Pearson symbol oI24‐3.5, RI = 0.0696. ζ2‐Al3Cu4‐δ forms a distinctive a × √3a × 2c superstructure of a metal deficient Ni2In‐type‐related structure. The phase is meta‐stable at ambient temperature. Between 400 °C and 450 °C it decomposes into ζ1‐Al3Cu4 and η2‐AlCu. Entropic contributions to the stability of ζ2‐Al3Cu4‐δ are reflected in three statistically or partially occupied sites.  相似文献   

17.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

18.
During the reaction of an aqueous solution of (H3O)2[B12H12] with Tl2CO3 anhydrous thallium(I) dodecahydro‐closo‐dodecaborate Tl2[B12H12] is obtained as colorless, spherical single crystals. It crystallizes in the cubic system with the centrosymmetric space group Fm$\bar{3}$ (a = 1074.23(8) pm, Z = 4) in an anti‐CaF2 type structure. Four quasi‐icosahedral [B12H12]2– anions (d(B–B) = 180–181 pm, d(B–H) = 111 pm) exhibit coordinative influence on each Tl+ cation and provide a twelvefold coordination in the shape of a cuboctahedron (d(Tl–H) = 296 pm). There is no observable stereochemical activity of the non‐bonding electron pairs (6s2 lone pairs) at the Tl+ cations. By neutralization of an aqueous solution of the acid (H3O)2[B12H12] with PbCO3 and after isothermic evaporation colorless, plate‐like single crystals of lead(II) dodecahydro‐closo‐dodecaborate hexahydrate Pb(H2O)3[B12H12] · 3H2O can be isolated. This compound crystallizes orthorhombically with the non‐centrosymmetric space group Pna21 (a = 1839.08(9), b = 1166.52(6), c = 717.27(4) pm, Z = 4). The crystal structure of Pb(H2O)3[B12H12] · 3H2O is characterized as a layer‐like arrangement. The Pb2+ cations are coordinated in first sphere by only three oxygen atoms from water molecules (d(Pb–O) = 247–248 pm). But a coordinative influence of the [B12H12]2– anions (d(B–B) = 173–181 pm, d(B–H) = 93–122 pm) on lead has to be stated, too, as three hydrogen atoms from three different hydroborate anions are attached to the Pb2+ cations (d(Pb–H) = 258–270 pm) completing their first‐sphere coordination number to six. These three oxygen and three hydrogen ligands are arranged as quite irregular polyhedron leaving enough space for a stereochemical lone‐pair activity (6sp) at each Pb2+ cation. Since additional intercalating water of hydration is present as well, both classical H–Oδ ··· +δH–O‐ and unconventional B–Hδ ··· +δH–O hydrogen bonds play a significant role in the stabilization of the entire crystal structure.  相似文献   

19.
Bis(2-benzothiazolyl)tetrasulfane prepared from the mercaptane and S2Cl2 crystallizes in the monoclinic space group C2/c with a = 3513 pm, b = 577.28 pm, c = 800.0 pm, β = 98.74°, ρ = 1.64 g cm?3 (at 298 K). The molecules are of C2 symmetry with the geometrical parameters of the S4 backbone: dss = 202.7 (terminal) and 207.3 pm (central), αsss = 106.4°, τssss = 78.5°. The overall conformation is all-trans. Bis(4-chlorophenyl)tetrasulfane prepared from the mercaptane and diisopropoxydisulfane crystallizes in the monoclinic space group P21/a with a = 1237.7 pm, b = 748.4 pm, c = 1623.9 pm, β = 105.58°, ρ = 1.61 g cm?3 (at 298 K). The molecules occupy general positions but are approximately of C2 symmetry with dss = 203.6 (terminal), 206.7 (central) and 202.3 pm (terminal), αsss = 107.4° and 108.4°, τssss = 75.5° (all-trans conformation). The intermolecular interactions are of van der Waals type. Infrared, Raman, mass and NMR spectra (1H, 13C) are reported.  相似文献   

20.
The crystal structure of EMIm diaquobis(μ‐oxalato)chromate(III) (1‐ethyl‐3‐methylimidazolium chromium(III) dioxalate dihydrate) was determined from X‐ray single crystal diffraction studies. A pale violet crystal of good optical quality was used for the structure determination at –100(2) and 25(2) °C. The basic crystallographic data for the low temperature structure are as follows: triclinic symmetry, space group P$\bar{1}$ , a = 7.6202(8) Å, b = 9.7668(9) Å, c = 10.7171(11) Å, α = 109.257(9)°, β = 90.494(8)°, γ = 105.685(8)°, V = 720.75(1) Å3. The crystal structure was solved by direct methods and refined (using anisotropic displacement parameters for all non‐hydrogen atoms) to a final residual of R1 = 0.039 for 2062 independent observed reflections [I > 2σ(I)]. The compound is built up from alternating layers parallel to (010) containing (EMIm)+ cations or Cr(C2O4)2(H2O)2 anions, respectively. The two crystallographically independent Cr(C2O4)2(H2O)2 octahedra reside on centers of symmetry (Wyckoff sites 1a and 1f). The corners of the octahedra consist of four oxygen atoms from two oxalate groups and two additional water molecules. EMIm+ cations provide linkage between different octahedral layers by hydrogen bridging. The water molecules in turn form hydrogen bonds with adjacent octahedra within the same layer. According to DTA/TG experiments the present compound shows several thermal processes in the range between room temperature and 1000 °C. However, pyrolysis is reproducibly yielding pure inorganic composites, qualifying this novel organic‐inorganic hybrid salt also as a stable precursor for nanoscalar ceramic materials. The final product consists of a distinct mixture of Cr2O3 and Cr3C2 in the molar ratio of 1:1. Concomittant oxide and carbide formation is an unprecedented disintegration pathway of the thermal treatment of oxalatochromates without reducing atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号