首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and the physical properties of several polyamide 66 (PA66)/polyamide 12 (PA12) blends containing different amounts of the two polymers and obtained by melt‐blending have been investigated. A low amount of organically‐modified layered silicate (OMLS, 4 wt%) has also been introduced in order to further improve the physical properties and, in particular, to evaluate its effect on the blends' structure and components' miscibility. The microstructure and morphology of all the composites were analyzed by means of X‐Ray diffraction (WAXD), transmission electron microscopy (TEM), and high resolution scanning electron microscopy (SEM), while the macroscopic scale properties (mechanical behavior and water adsorption) were assessed in order to investigate and understand the materials' structure–properties relationships. The partial miscibility of PA66 and PA12, with phase separation depending on blend composition, has been confirmed. The results also underlined the possibility to tailor the behavior of polymer blends in terms of mechanical water adsorption properties by varying the amount of PA12, added to PA66 with and without the addition of the OLMS. The effectiveness of the clay in modifying the components' miscibility as well as its tendency to segregate preferentially within separate PA66 domains have been assessed. WAXD results showed opposite effects of PA12 and clay on the crystallization behavior of PA66, an aspect that has also been deepened in another paper by the same authors discussing the results of the complete thermal characterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Over the last 10 years, research into co‐continuous polymer blends has been intense. Despite these efforts, there are very few detailed studies on the stability of this complex morphology. In this work, blends of poly(ε‐caprolactone) and polystyrene were melt‐mixed in an internal mixer for time intervals of 0.5–120 min at set temperatures of 140 and 170 °C, and the effect of the mixing time on the co‐continuous morphology was studied. This blend system was chosen because each component could be selectively dissolved and this allowed for a complete study of the co‐continuous region. The phase continuity was measured with a solvent‐extraction gravimetric technique, and the concentration range for co‐continuity was determined. The phase size and phase size distribution were obtained with the mercury intrusion porosimetry technique. The results indicate that the co‐continuous morphology forms very early in the mixing process and achieves a stable morphology within the first 5 min of mixing for virtually all the co‐continuous compositions. For all cases studied, the co‐continuous morphology remains unchanged over mixing times as long as 1–2 h. These results support the notion of a stable steady‐state formation of co‐continuous morphologies during melt mixing similar to that observed for matrix/dispersed phase type blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 864–872, 2007  相似文献   

3.
The aim of the work presented is to evaluate the mechanisms and phase interactions in ternary blends based on different polyamides and functionalised elastomers, and to establish a correlation between the morphology controlled by the specific binary interactions, and physical and technological properties, respectively. The properties of the ternary system polyamide 6/polyamide 66/ elastomer depend on the specific blend morphology which is determined mainly by the differences of the surface tension of the components. A phase‐in‐phase structure was observed by microscopic study (AFM) in the ternary polyamide 6/polyamide 66/elastomer blends with maleic anhydride grafted ethene‐octene copolymer, and a “quasi” phase‐in‐phase structure in blends with maleic anhydride grafted ethene‐propene‐diene copolymer as the elastomer phase. An incorporation of polyamide inside of the elastomer particles was observed in the first case due to the difunctionality of polyamide 66. This type of morphology causes an increased elongation at break and toughness of these blends. In comparison to the binary polyamide based blends the ternary blends show an increased elastic modulus, elongation at break and yield stress as well as a high impact strength at low temperatures up to ?20 °C. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   

5.
Blends of polyamide‐1010 (PA1010) and a thermoplastic poly(ester urethane) elastomer (TPU) were prepared by melt extrusion. The impact properties, phase structure, compatibility, and fracture morphology under impact were investigated for PA1010/TPU blends. The results indicated that TPU enhanced the impact strength of PA1010, and the best impact modification effect of the blends was obtained with 20 wt % TPU. The phase structure was investigated with scanning electron microscopy, and the compatibility was investigated with dynamic mechanical analysis and small‐angle X‐ray scattering. The study of the fracture morphology of PA1010/TPU blends indicated that the fracture surface of the blends had special features, consisting of many fibrillar elastomer particles and a conglutination–multilayer structure, as well as many small tubers on this structure. These fracture phenomena could not be found on the fracture surface of pure PA1010. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1177–1185, 2005  相似文献   

6.
The effects of thermal annealing on the viscoelastic properties and morphology of films prepared from bimodal latex blends containing equal weight fractions of soft and hard latex particles with controlled sizes were investigated. The thermal and viscoelastic properties of as‐dried and annealed samples were investigated with differential scanning calorimetry and dynamic mechanical analysis (DMA). Throughout the thermal annealing, the latex blend morphologies were also followed with atomic force microscopy and transmission electron microscopy (TEM). A particulate morphology, consisting of hard particles evenly dispersed in a continuous soft phase, was observed in the TEM micrographs of the as‐dried latex blends and resulted in an enhancement of the mechanical film properties at temperatures between the α relaxations of the soft and hard phases in the DMA thermograms. As soon as the thermal annealing involved temperatures higher than the glass‐transition temperature of the hard phase, the hard particles progressively lost their initial spherical shape and formed a more or less continuous phase in the latex blends. This induced coalescence of the hard particles was confirmed by the association of the experimental viscoelastic data with theoretical predictions, based on self‐consistent mechanical models, which were performed by the consideration of either a particulate or cocontinuous morphology for the bimodal latex blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2289–2306, 2005  相似文献   

7.
The bulk mechanical properties of a blend of elastomers are found to depend on the micro and nano scale morphology of the phases of the materials in the blend. In this study, we examine the phase morphology of blends of incompatible elastomers using Atomic Force Microscopy (AFM). Specifically, nanoindentation and Tapping Mode AFM (TMAFM) imaging techniques are used as experimental tools for mapping the composition of unfilled elastomeric blends. Depending on the composition of the blend, either co‐continuous or discontinuous domain/matrix morphology is observed. To identify the different components in bromobutyl (BIIR)/natural rubber (NR) blends, nanoscale indentation measurements were made on the observed phase‐separated regions. Results from force mode AFM and mechanical measurements of bulk NR and BIIR are used to assist in the interpretation of the TMAFM results for the BIIR/NR blends. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 492–503, 2006  相似文献   

8.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

9.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
本文综述了国内外有关利用环氧树脂改性热塑性树脂共混体系研究的最新进展。着重阐述了环氧树脂在热塑性树脂之间的增容作用,如尼龙6(PA6)合金体系,改性聚苯乙烯塑料(ABS)合金体系,以及聚对苯二甲酸丙二醇酯(PTT)合金体系等。同时,介绍了利用环氧树脂的反应活性提高无机填料在聚合物中分散性研究的情况,如二氧化硅纳米粒子在聚醚砜(PES)中,以及滑石粉在聚丙烯(PP)中分散性的提高。最后,简介了环氧树脂改性热塑性树脂提高热塑性树脂物理机械性能方面的研究方向和成果并展望了环氧树脂在热塑性树脂改性研究中的前景。  相似文献   

11.
Three different biodegradable polyesters, namely, polycaprolactone (PCL), polybutylene succinate (BIONOLLE), and a copolyester of adipic acid, terephthalic acid, and 1,4‐butanediol (EASTAR) were melt‐blended using a twin‐screw extruder. The percentage composition of each of the aforementioned polymers was varied to obtain different blends, and the mechanical properties were evaluated. Selected blends showed significant improvement in tensile strength as compared with the individual polymers used to prepare the blend. The compatibility between the polymer phases was examined via Fourier transform infrared (FTIR) and nuclear magnetic resonace (NMR) spectroscopy as well as dynamic mechanical analysis. FTIR and NMR data confirmed the occurrence of hydrogen‐bonding and ester‐interchange reactions. Thermal properties and changes in crystallinity of the blends were examined with differential scanning calorimetry and X‐ray diffraction. A considerable increase in crystallinity was shown by the blend system containing BIONOLLE/PCL. The morphology of the blends was observed and correlated to the improved mechanical properties of the blend system. Results revealed an intermediate multiphase system in which a significant degree of mixing was achieved through the chemical interaction of the functional groups present, while using the twin‐screw extruder. Significant improvement in mechanical properties of some blends was observed, and information about the miscibility of these polyesters is provided. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2003–2014, 2002  相似文献   

12.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

13.
The mechanical properties and morphology of homoblends of poly(ethyl acrylate‐co‐acrylate) (PEAA) having one ion pair per ionic monomer repeat unit and poly(ethyl acrylate‐co‐itaconate) (PEAITA) having two ion pairs were investigated. It was found that the compositional variation in the ionomer homoblends did not affect the matrix or cluster glass transition temperatures of the two ionomers of the homoblends. It was also observed that the ionomer homoblends showed two ionic plateaus and that the changes in the two ionic moduli were directly related to the relative amounts of the two ionomers. The ionic moduli calculated with the model for filler‐dispersed materials were found to fit the experimental data to a great extent. Therefore, it was suggested that the PEAITA/PEAA ionomer homoblends were filler‐containing composite materials rather than miscible blends. In the X‐ray scattering study, it was observed that the morphology of the ionomer homoblends was not affected by mixing. The results obtained in this work might be useful for the modification of the storage moduli of copolymers in a certain temperature range without the alteration of their processing temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1045–1052, 2007.  相似文献   

14.
The effect of a small admixture of high‐density polyethylene (HDPE) with a high or low viscosity to polystyrene/polyamide (PS/PA) blends of various compositions was studied. PS/PA blends with composition near 50/50 form sheet‐like or fiber‐like morphology at mixing that passes to the cocontinuous structure during compression molding. Ternary PS/PA/HDPE blends with PS/PA ratio about 50/50 show similar behavior. Generally, neither continuity nor shape of PS and PA phases was changed qualitatively by the addition of a small amount of HDPE. In agreement with existing rules for ternary blends, HDPE particles prefer a contact with PS phase to PA phase. On the other hand, none of these rules explains why a number of small HDPE subinclusions were dispersed into PS particles instead of HDPE‐PS core‐shell structure with a lower Gibbs free energy. Quantitative evaluation of the size of PA particles in blends with PS matrix showed that the previously proposed rule stating, that the addition of a small amount of a third immiscible component leads to a strong decrease in the size of dispersed particles, was not valid for the blends studied in this work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2158–2170, 2009  相似文献   

15.
Multiwalled carbon nanotubes (purified, p‐MWNT and ~ NH2 functionalized, f‐MWNT) were melt‐mixed with 50/50 cocontinuous blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene in a conical twin‐screw microcompounder to obtain conductive polymer blends utilizing the conceptual approach of double‐percolation. The state of dispersion of the tubes was assessed using AC electrical conductivity measurements and melt‐rheology. The rheological and the electrical percolation threshold was observed to be ~ 1–2 wt % and ~ 3–4 wt %, respectively, for blends with p‐MWNT. In case of blends with f‐MWNT, the rheological percolation threshold was observed to be higher (2–3 wt %) than p‐MWNT but the electrical percolation threshold remained almost same. However, the absolute values were significantly lower than blends with p‐MWNT. In addition, significant refinement in the cocontinuous morphology of the blends with increasing concentration of MWNT was observed in both the cases. Further, an attempt was made to understand the underlying concepts in relation to cocontinuous morphologies that how the geometrical percolation threshold which adversely suffered because of the attrition of tubes under prolonged shear contributed further in retaining the rheological percolation threshold. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1619–1631, 2008  相似文献   

16.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   

17.
Conductive elastomeric blends based on ethylene–propylene–5‐ethylidene–2‐norbornene terpolymer (EPDM) and polyaniline doped with 4‐dodecylbenzenesulfonic acid [PAni(DBSA)] were cast from organic solvents. Functionalization of the elastomer was promoted by grafting with maleic anhydride. Vulcanization conditions were optimized with an oscillating disk rheometer. The conductivity, morphology, thermal stability, compatibility, and mechanical behavior of the obtained mixtures were analyzed by in situ direct current conductivity measurements, atomic force microscopy, transmission electron microscopy, wide‐angle X‐ray scattering, thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis, stress–strain and hysteresis tests. The vulcanization process was affected by temperature, the PAni content, and maleic anhydride. A reinforcement effect was promoted by the vulcanizing agent. The formation of links between the high‐molar‐mass phases and oligomers of PAni(DBSA) in the elastomeric matrix enhanced the thermal stability and ultimate properties of the blends. By the appropriate control of the polymer blends' composition, it was possible to produce elastomeric materials with conductivities in the range of 10?5–10?4 S · cm?1 and excellent mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1767–1782, 2004  相似文献   

18.
Graphite was dispersed in immiscible polyvinylidene fluoride/maleated polypropylene (PVDF/PPgMA) blends to improve electrical and thermal conductive properties by building a double‐percolation structure. The morphology of PVDF/PPgMA blends was first investigated for several compositions by selective solvent extraction, scanning electron microscopy, and dynamic mechanical thermal analysis. Blends of PVDF and PPgMA were prepared in different relative fractions, and a PVDF/PPgMA ratio of 7/3 showed a well‐co‐continuous structure. From this blend, the morphology and properties of composites with different concentrations of graphite were investigated to prepare double‐percolated structures. Graphite was observed to selectively localize in the PPgMA phase. The electrical and thermal conductive properties of graphite‐containing blends were measured, showing enhanced conductivity for the double‐percolation structures compared with single‐polymer composites containing the same graphite loadings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000  相似文献   

20.
In a previous paper the structure and the physical properties of melt mixed polyamide 66 (PA66)/polyamide 12 (PA12) blends characterized by different compositions have been investigated by means of morphological and physical analyses. A low amount of organically‐modified layered silicate (OMLS, 4 wt%) was introduced in order to evaluate its effect on blends structure and components miscibility. This paper completes the characterization of these materials investigating their thermal properties by means of standard and modulated differential scanning calorimetry (DSC, MDSC), dynamic‐mechanical analysis (DMA), and thermogravimetric analysis (TGA). The partial miscibility of PA66 and PA12, with phase separation depending on blend composition, has been confirmed by analyzing the glass transition temperature (Tg) dependence on composition as well as the existence of strong segmental interactions between polymer components. A compatibilizing action of OMLS has been observed because of a lowering of interfacial tension avoiding coalescence phenomena between particles during melt mixing process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号