首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The deposition of Ce‐based conversion coatings onto 2024‐T3 Al alloy sheet was studied using Rutherford backscattering spectroscopy, scanning electron microscopy, Auger electron spectroscopy, x‐ray photoelectron spectroscopy and atomic force microscopy. The Al sheet was pretreated with an alkaline clean followed by treatment in a Ce(IV) and H2SO4‐based desmutter. The Ce(IV)‐based conversion coating solution contained 0.1 M CeCl3·7H2O and 3% H2O2 and was acidified to pH 1.9 with HCl. Upon immersion, there was an induction period that included activation followed by aluminium oxide growth over the matrix and cerium oxide deposition onto cathodic intermetallic particles and along rolling marks on the surface. After the induction period cerium oxide deposited generally across the whole surface and thickened. The strongest anodic sites initially were adjacent to the intermetallic cathodes and resulted in aluminium dissolution but also oxide thickening. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The effects of three non‐chromate‐based deoxidizers, namely NaBrO3/HNO3, (NH4)4Ce(SO4)4/H2SO4 and Fe(III)/HF/HNO3, on the Al alloy 7475‐T7651 were investigated. Several analytical methods were employed, including SEM, AES, transmission electron microscopy (TEM), electron energy‐loss spectroscopy (EELS) and glow discharge optical emission spectrometry (GDOES), to study the effects on the surface of this alloy after each treatment compared with the as‐received and alkaline‐cleaned alloy surfaces. The untreated alloy was found to have a thick oxide of 200–320 nm, consisting mainly of MgO. Alkaline cleaning results in an etching effect that thins the oxide and also deposits a thin silicate layer on the surface. In the case of the deoxidizers, there is significant removal of the native oxide of the alloy by the NaBrO3/HNO3 deoxidizer. There is also evidence of intermetallic attack on the alloy. The (NH4)4Ce(SO4)4/H2SO4 deoxidizer, which is a low‐etch‐rate deoxidizer, resulted in a slight thinning of the oxide. However, the effect was not significantly greater than with alkaline cleaning alone. The most effective deoxidizer in reducing the oxide thickness of the alloy is Fe(III)/HF/HNO3, in which the etch rate was sufficiently high to remove completely the native oxide. In this case, equilibrium between oxide removal and the formation of new oxides on the alloy surface was achieved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Growth of Ag islands under ultra‐high vacuum condition on air‐oxidized Si(110)‐(5 × 1) surfaces has been investigated by in situ reflection high energy electron diffraction and ex situ scanning electron microscopy and cross‐sectional transmission electron microscopy. A thin oxide is formed on Si via exposure of the clean Si(110)‐(5 × 1) surface to air. The oxide layer has a short range order. Deposition of Ag at different thicknesses and at different substrate temperatures reveal that the crystalline qualities of the Ag film are almost independent of the thickness of the Ag layer and depend only on the substrate temperature. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher temperatures. For deposition at 550 °C sharp spots in the reflection high energy electron diffraction pattern corresponding to an epitaxial orientation with the underlying Si substrate are observed. The presence of a short range order on the oxidized surface apparently influences the crystallographic orientation of the Ag islands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Porous anodic oxides generated on copper‐containing aluminium alloys are less regular than anodic oxides generated on pure aluminium. Specifically, a porous oxide morphology comprising layers of embryo pores, generated by a cyclic process of oxide film growth and oxygen evolution, is generally observed. In this work, the relation between the oxidation behaviour of copper during anodising and the specific porous oxide film morphology was investigated by electrochemical techniques, transmission electron microscopy and Rutherford backscattering spectroscopy (RBS). It was found that the anodising potential determines the oxidation behaviour of copper, and the latter determines the porous oxide morphology. At low voltage, relatively straight pores with continuous cell walls were obtained on Al? Cu alloys, but selective oxidation of aluminium atoms resulted in the occlusion of copper‐containing metallic nanoparticles in the anodic film. At higher potentials, copper oxidation promoted oxygen evolution within the barrier layer, and generation of a less regular film morphology. RBS, performed on Al? Cu alloy specimens, revealed a high volume fraction of copper atoms in the anodic films generated at low potentials and a reduced amount of copper atoms in the anodic oxide films generated at high potentials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Rolling is known to alter the surface properties of aluminium alloys and to introduce disturbed near‐surface microcrystalline layers. The near‐surfaces of mostly higher alloyed materials were investigated by various techniques, often combined with a study of their electrochemical behaviour. Cross‐sectional transmission electron microscopy (TEM), after ion milling or ultramicrotomy, indicated the presence of disturbed layers characterized by a refined grain structure, rolled‐in oxide particles and a fine distribution of intermetallics. Those rolled‐in oxide particles reduce the total reflectance of rolled Al alloys. Furthermore, various depth profiling techniques, such as AES, XPS, SIMS and qualitative glow discharge optical emission spectroscopy (GD‐OES) have been used to study the in‐depth behaviour of specific elements of rolled Al alloys. Here, the surface and near‐surface of AlMg0.5 (a commercially pure rolled Al alloy with addition of 0.5 wt.% Mg) after hot and cold rolling, and with and without additional annealing is studied with complementary analytical techniques. Focused ion beam thinning is introduced as a new method for preparing cross‐sectional TEM specimens of Al surfaces. Analytical cross‐sectional TEM is used to investigate the microstructure and composition. Measuring the total reflectance of progressively etched samples is used as an optical depth profiling method to derive the thickness of disturbed near‐surface layers. Quantitative r.f. GD‐OES depth profiling is introduced to study the in‐depth behaviour of alloying elements, as well as the incorporation of impurity elements within the disturbed layer. The GD‐OES depth profiles, total reflectance and cross‐sectional TEM analyses are correlated with SEM/energy‐dispersive x‐ray observations in GD‐OES craters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
To enable the use of GaAs‐based devices as chemical sensors, their surfaces must be chemically modified. Reproducible adsorption of molecules in the liquid phase on the GaAs surfaces requires controlled etching procedures. Several analytical methods were applied, including Fourier transform infrared spectroscopy (FTIRS) in attenuated total reflection and multiple internal reflection mode (ATR/MIR), high‐resolution electron energy loss spectroscopy (HREELS), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) for the analysis of GaAs (100) samples treated with different wet‐etching procedures. The assignment of the different features due to surface oxides present in the vibrational and XPS spectra was made by comparison with those of powdered oxides (Ga2O3, As2O3 and As2O5). The etching procedures here described, namely, those using low concentration HF solutions, substantially decrease the amount of arsenic oxides and aliphatic contaminants present in the GaAs (100) surfaces and completely remove gallium oxides. The mean thickness of the surface oxide layer drops from 1.6 nm in the raw sample to 0.1 nm after etching. However, in presence of light, water dissolution of arsenic oxides is enhanced, and oxidized species of gallium cover the surface. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The asymmetric roughening of silicon microcantilevers using different vapor stain‐etching conditions is studied with the aim of optimizing face selective coating of microcantilevers by polymers through simple dipping. The effect of roughening is studied by following the time‐dependent guest‐induced bending of silicone microcantilevers coated with a poly‐4‐vinylpyridine sensing layer. A correlation between the surface roughness of the microcantilevers and their time‐dependent guest‐induced bending is gained from combining high resolution scanning electron microscopy studies of the surface of the microcantilevers as well as their cross‐sections with time‐dependent guest‐induced microcantilever bending. The purpose of the present work is to lay the foundations for a small and relatively simple gas‐phase sensing tool based on a microcantilever platform capable of offering wide range sensing capabilities. © 2013 Wiley Periodicals, 2014 , 52, 141–146  相似文献   

11.
One‐dimensional iron oxide materials fabricated on conducting glass substrates and their unique properties make these nanostructures promising candidates for a wide range of applications. Herein, vertically oriented α‐Fe2O3 nanorod arrays synthesized under hydrothermal conditions over a large area are described, as an active platform for surface‐enhanced resonance Raman scattering (SERRS) and surface‐enhanced fluorescence (SEF). From scanning electron microscopy images the formation of a homogeneous distribution of vertically oriented rods in a large area is confirmed. For activating the localized surface plasmon resonances, which are responsible for SERRS and SEF, a 6 nm layer of Ag is deposited onto the α‐Fe2O3 nanorod arrays by physical vapor deposition to form Ag islands.  相似文献   

12.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   

13.
In recent years, an enormous amount of research has been devoted to the study of photosensitive materials from both fundamental and practical viewpoints, due to their wide applications in photocatalytic 1 – 3 and optoelectronic devices, 4 , 5 ultraviolet (UV) photodetectors, 6 – 9 photoswitch microdevices, 10 , 11 light‐emitting diodes, 12 , 13 photovoltaic devices, 14 – 16 and photoelectrochemical cells. 17 Metal oxides, such as ZnO, TiO2, SnO2, and NiO have been the most investigated photosensitive materials. 3 , 6 – 8 , 18 – 21 To enhance and take full advantage of their photosensitivity, functionalizing their surface with a polymer that has a high light absorption ability has become one of the widely used methods. 1 – 12 , 22 – 24 For example, Z. L. Wang et al. reported that the UV photocurrent of a ZnO nanobelt‐based sensor was enhanced by close to five orders of magnitude after functionalizing its surface with polystyrene sulfate which has a high UV absorption ability. 25 T. Sasaki et al. reported the assembly of a TiO2 nanoparticle film with poly(3,4‐ethylenedioxythiophene) and poly(4‐styrene sulfonate) (PEDOT‐PSS) through layer‐by‐layer fabrication in the nanometer scale. The electric conductivity of the TiO2 composite films could be tuned by UV and visible (Vis) light. 22 Thus, sunlight or photon energy can be used and transformed to electrical energy by UV‐photosensitive metal oxides after their surfaces have been functionalized with a dye that has a high Vis absorption ability. To date, most of the dye‐sensitized solar cells are based on the surface functionalization of UV‐photosensitive metal oxides by dyes. 26 – 28 However, to the best of our knowledge, all of the reports on surface functionalization enhanced only the UV photosensitivity of the metal oxide. In other words, this method has been used exclusively to enhance the UV photocurrent in metal oxides that already have UV‐photosensitive properties, but not to induce UV photocurrent in metal oxides that have no UV‐photosensitive properties. In fact, to the best of our knowledge, there are no surface‐functionalizing reports on inducing UV or Vis photocurrent in metal oxides that have no UV‐ or Vis‐photosensitive properties.  相似文献   

14.
The treatment of a suspension of graphite oxide (GO) with sodium azide leads to a material that, after reduction, features amino groups at the top and bottom of the sheets. These groups react through microcontact printing with an isothiocyanate monolayer on a silicon oxide substrate to form covalent bonds that strongly attach to the particles on the surface. With ultrasonication it is possible to obtain exfoliation of the sheets that are not covalently bound to the surface leaving single‐layer platelets attached to the substrate. The azido derivative can be also used to functionalize the graphene oxide with long alkylic chains through a click chemistry approach. This functionalization results in the exfoliation of this material in dimethylformamide. The novel materials were fully characterized by different techniques including IR spectroscopy, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM), X‐Ray photoelectron spectroscopy (XPS), and solid state NMR spectroscopy. The material with amino groups, after the reduction step, is conductive with a resistivity only approximately seven times larger than that of unprocessed graphite. This implies that after reduction of the GO, the conjugated sp2 network is largely restored. We consider this to be an important step towards a chemical approach for forming conducting large‐area platelet films of single‐layer graphene.  相似文献   

15.
Forming uniform metal oxide nanocoatings is a well‐known challenge in the construction of core–shell type nanomaterials. Herein, by using buffer solution as a specific reaction medium, we demonstrate the possibility to grow thin nanoshells of metal oxides, typically Al2O3, on different kinds of core materials, forming a uniform surface‐coating layer with thicknesses achieving one nanometer precision. The application of this methodology for the surface modification of LiCoO2 shows that a thin nanoshell of Al2O3 can be readily tuned on the surface for an optimized battery performance.  相似文献   

16.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   

17.
X‐ray photoelectron spectroscopy was used to investigate thermal stability of HfO2 on SiO2/Si substrate prepared by atomic layer deposition, followed by annealing at different temperature. Hf silicate and Hf silicide are formed at the interface of HfO2 and SiO2 during deposition. The Hf silicide disappears, while the amount of the Hf silicate is intensified after post‐deposition annealing treatment at 400 °C. Phase separation of the Hf silicate layer occurs when the annealing temperature is over 400 °C, resulting in the Hf silicate decomposition into Si and Hf oxides. Moreover, crystallization at high temperature leads to grain boundaries formation, which deteriorates the gate leakage current, as observed by the electrical measurements. The similar annealing temperature dependence of both internal electric field and the amount of Hf silicate implies that the Hf silicate plays a key role in building up the internal electric field, which is attributed to generation of oxygen vacancies (Vo) in the Hf silicate layer. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high‐purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal–organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal–organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid‐state 29Si MAS NMR, XPS, SIMS, and HRTEM.  相似文献   

19.
The effect on AA2024‐T3 of a non‐chromate deoxidizer based on Fe(III)–HF–HNO3 has been examined by atomic force microscopy, x‐ray photoelectron spectroscopy and scanning electron microscopy. Magnesium and silicon present on the surface after alkaline cleaning was removed very rapidly at room temperature. The surface oxide also showed signs of significant attack within a short period of time. Intermetallics were removed almost completely within 10 min. There was evidence of iron deposition from the deoxidizer, which would tend to reduce the corrosion resistance of subsequent conversion coatings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
In austenitic stainless steel nitrogen stabilizes the austenitic phase, improves the mechanical properties and increases the corrosion resistance. Nitrogen alloying enables to produce austenitic steels without the element nickel which is high priced and classified as allergy inducing. A novel production route is nitrogen alloying of CrMn‐prealloyed steel powder via the gas phase. This is beneficial as the nitrogen content can be adjusted above the amount that is reached during conventional casting. A problem which has to be overcome is the oxide layer present on the powder surface which impedes both the sintering process and the uptake of nitrogen. This study focuses on whether heat treatment under pure nitrogen is an appropriate procedure to enable sintering and nitrogen uptake by reduction of surface oxides. X‐ray photoelectron spectroscopy (XPS) in combination with scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) are used to investigate the surface of powdered FeMn19Cr17C0.4N heat treated under nitrogen atmosphere. The analyses showed reduction of iron oxides already at 500 °C leading to oxide‐free metallic surface zones. Mn and Cr oxides are reduced at higher temperatures. Distinct nitrogen uptake was registered, and successful subsequent sintering was reached. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号