首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tanh method is a very powerful technique for computation of exact traveling wave, in this paper this method has been employed for special modified states of Burger, Klein-Gordon and Fisher-Burger equations and the solitary solution of these equations are derived.  相似文献   

2.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this paper, we develop a new, simple, and accurate scheme to obtain approximate solution for nonlinear differential equation in the sense of Caputo‐Fabrizio operator. To derive this new predictor‐corrector scheme, which suits on Caputo‐Fabrizio operator, firstly, we obtain the corresponding initial value problem for the differential equation in the Caputo‐Fabrizio sense. Hence, by fractional Euler method and fractional trapeziodal rule, we obtain the predictor formula as well as corrector formula. Error analysis for this new method is derived. To test the validity and simplicity of this method, some illustrative examples for nonlinear differential equations are solved.  相似文献   

5.
In this article, the Exp‐function method is applied to nonlinear Burgers equation and special fifth‐order partial differential equation. Using this method, we obtain exact solutions for these equations. The method is straightforward and concise, and its applications are promising. This method can be used as an alternative to obtain analytical and approximate solutions of different types of nonlinear differential equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

6.
Traveling wave solutions are obtained by using a relatively new technique which is called Tanh and extended Tanh method for Drinefel’d–Sokolov–Wilson Equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.  相似文献   

7.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

8.
We study the defocusing nonlinear Schrödinger (NLS) equation written in hydrodynamic form through the Madelung transform. From the mathematical point of view, the hydrodynamic form can be seen as the Euler–Lagrange equations for a Lagrangian submitted to a differential constraint corresponding to the mass conservation law. The dispersive nature of the NLS equation poses some major numerical challenges. The idea is to introduce a two‐parameter family of extended Lagrangians, depending on a greater number of variables, whose Euler–Lagrange equations are hyperbolic and accurately approximate NLS equation in a certain limit. The corresponding hyperbolic equations are studied and solved numerically using Godunov‐type methods. Comparison of exact and asymptotic solutions to the one‐dimensional cubic NLS equation (“gray” solitons and dispersive shocks) and the corresponding numerical solutions to the extended system was performed. A very good accuracy of such a hyperbolic approximation was observed.  相似文献   

9.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

10.
The purpose of this paper is to establish unique solvability for a certain generalized boundary‐value problem for a loaded third‐order integro‐differential equation with variable coefficients. Moreover, the method of integral equations is applied to obtain an equation related to the Riemann‐Liouville operators.  相似文献   

11.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

12.
In this paper we study the spatial behaviour of solutions of some problems for the dual‐phase‐lag heat equation on a semi‐infinite cylinder. The theory of dual‐phase‐lag heat conduction leads to a hyperbolic partial differential equation with a third derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary‐value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial‐time lines. A class of non‐standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T are assumed proportional to their initial values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A predictor–corrector scheme is developed for the numerical solution of the sine‐Gordon equation using the method of lines approach. The solution of the approximating differential system satisfies a recurrence relation, which involves the cosine function. Pade' approximants are used to replace the cosine function in the recurrence relation. The resulting schemes are analyzed for order, stability, and convergence. Numerical results demonstrate the efficiency and accuracy of the predictor–corrector scheme over some well‐known existing methods. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 133–146, 2000  相似文献   

14.
In this article, we continue the numerical study of hyperbolic partial differential‐difference equation that was initiated in (Sharma and Singh, Appl Math Comput 9 ). In Sharma and Singh, the authors consider the problem with sufficiently small shift arguments. The term negative shift and positive shift are used for delay and advance arguments, respectively. Here, we propose a numerical scheme that works nicely irrespective of the size of shift arguments. In this article, we consider hyperbolic partial differential‐difference equation with negative or positive shift and present a numerical scheme based on the finite difference method for solving such type of initial and boundary value problems. The proposed numerical scheme is analyzed for stability and convergence in L norm. Finally, some test examples are given to validate convergence, the computational efficiency of the numerical scheme and the effect of shift arguments on the solution.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

15.
The aim of this article is to present an efficient numerical procedure for solving nonlinear integro‐differential equations. Our method depends mainly on a Taylor expansion approach. This method transforms the integro‐differential equation and the given conditions into the matrix equation which corresponds to a system of nonlinear algebraic equations with unkown Taylor coefficients. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer program written in Maple10. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

16.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The memory‐resistor or memristor is a new electrical element characterized by a nonlinear charge‐flux relation. This device poses many challenging problems, in particular from the circuit modeling point of view. In this paper, we address the index analysis of certain differential‐algebraic models of memristive circuits; specifically, our attention is focused on so‐called branch‐oriented models, which include in particular tree‐based formulations of the circuit equations. Our approach combines results coming from differential‐algebraic equation theory, matrix analysis and theory of digraphs. This framework should be useful in future studies of dynamical aspects of memristive circuits. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents general framework for solving the nth‐order integro‐differential equation using homotopy analysis method (HAM) and optimal homotopy asymptotic method (OHAM). OHAM is parameter free and can provide better accuracy over the HAM at the same order of approximation. Furthermore, in OHAM the convergence region can be easily adjusted and controlled. Comparison, via two examples, between our solution using HAM and OHAM and the exact solution shows that the HAM and the OHAM are effective and accurate in solving the nth‐order integro‐differential equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, a new method called linearized and rational approximation method based on differential quadrature method (DQM) is proposed for the Benjamin‐Bona‐Mahony (BBM) equation on a semi‐infinite interval. Numerical result indicates the high accuracy and relatively little computational effort of this method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

20.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号