首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimuli responsive hydrogels (PNIPAAm‐MSp) with a thermoresponsive backbone and photochromic pendant groups were synthesized via free radical polymerization using N‐isopropylacrylamide, modified spironaphthoxazines with a polymerizable double bond (MSp) as photochromic monomer, the crosslinker N,N′‐methylenebis(acrylamide) and the initiator 2,2′‐azobis(isobutyronitrile) in dimethylsulfoxide. The polymers are dual responsive, in that poly(N‐isopropylacrylamide) (PNIPAAm) responds to temperature changes whereas the pendant spironaphthoxazines respond to light. Irradiation enhanced the water absorption of the polymers while increases in temperature decreased it. The irradiated PNIPAAm‐MSp showed best water absorption at 0 °C (Q = 3.25) while water desorbed at higher temperatures (35 °C; Q = 0.30); where Q is the amount of water absorbed by a gram of dry polymer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3318–3325, 2009  相似文献   

2.
A series of novel styrene derived monomers with triphenylamine‐based units, and their polymers have been synthesized and compared with the well‐known structure of polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine with respect to their hole‐transporting behavior in phosphorescent polymer light‐emitting diodes (PLEDs). A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3‐methylphenyl‐aniline, 1‐ and 2‐naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems with the following device configuration: glass/indium–tin–oxide/PEDOT:PSS/polymer‐blend/CsF/Ca/Ag. In addition to the hole‐transporting host polymer, the polymer blend includes a phosphorescent dopant [Ir(Me‐ppy)3] and an electron‐transporting molecule (2‐(4‐biphenyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole). We demonstrate that two polymers are excellent hole‐transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole‐substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A?1 and a brightness of 6700 cd m?2 at 10 V is accessible. The phenothiazine‐functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well‐known polymer of N,N′‐bis(3‐methylphenyl)‐N,N′‐diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A?1 and a brightness of 2500 cd m?2 (10 V). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3417–3430, 2010  相似文献   

3.
Bottlebrush polymers have densely tethered side chains grafted to a linear polymer backbone, resulting in stretching of both the side chains and backbone. Prior studies have reported that the side chains are only weakly stretched while the backbone is highly elongated. Here, scaling laws for the bottlebrush backbone and side chains are determined through small‐angle neutron scattering analysis of a systematic series of poly(lactic acid) bottlebrush polymers synthesized via a “grafting‐through” ring‐opening polymerization. Scattering profiles are modeled with the empirical Guinier–Porod, rigid cylinder, and flexible cylinder models. Side chains are found to be only weakly stretched, with an end‐to‐end distance proportional to N0.55, while the overall bottlebrush increases in size proportional to N0.77. These results demonstrate that the bottlebrush backbone is not fully extended and that both side chains and backbone have significant conformational flexibility in solution. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 104–111  相似文献   

4.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   

5.
An approach to nanoparticles based upon the thermosensitivity of a copolyether is described. Two thermosensitive copolymers of glycidol with molar masses of 800,000 g/mol randomly substituted with ethyl isocyanate (28 and 35% substitution) were used to obtain mesoglobules. The effects of copolymer concentration and of the presence of surfactants (sodium dodecyl sulfate and hexadecyltrimethylammonium bromide) on the size of the mesoglobules formed were investigated. The obtained mesoglobules were monomodal and of narrowly distributed diameters, as shown by dynamic light scattering and atomic force microscopy measurements. The radical nucleated copolymerization of N‐isopropylacrylamide with N,N′‐methylenebisacrylamide as a crosslinker was performed in the presence of the mesoglobules. Nanoparticles of monomodal size distribution and low dispersity were obtained. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4074–4083, 2010  相似文献   

6.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Novel L ‐alanine and L ‐glutamic acid derivatized, carbazole‐containing N‐propargylamides [N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide and N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] were synthesized and polymerized with (nbd)Rh+6‐C6H5B?(C6H5)3] (nbd = norbornadiene) as a catalyst to obtain the corresponding polymers with moderate molecular weights in high yields. Polarimetry, circular dichroism, and ultraviolet–visible spectroscopy studies revealed that both poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] took a helical structure with a predominantly one‐handed screw sense in tetrahydrofuran, CHCl3, and CH2Cl2. The helix content of poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] could be tuned by heat or the addition of a protic solvent, and the helical sense of poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] was inverted by heat in CHCl3 or in mixtures of tetrahydrofuran and CH2Cl2. Poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] also took a helical structure in film states. They showed small fluorescence in comparison with the monomers and redox activity based on carbazole. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 253–261, 2007  相似文献   

8.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Boronic acid end‐functionalized polycaprolactone (PCL) polymers were synthesized by ring‐opening polymerization using a pinacol boronate ester‐containing (Bpin) initiator. The polymerization provides access to boron‐terminated polymers (i.e. Bpin‐PCL‐OH) with narrow molecular weight distributions (PDI = 1.09). Postsynthetic manipulation of the polymer's terminal hydroxyl group by copper‐catalyzed azide‐alkyne cycloaddition chemistry provides a series of bis end‐functionalized polymers with significant structural diversity at the termini. Deprotection of the boronate ester end group was accomplished with an acidic solid phase DOWEX resin. The boronate ester deprotection methodology does not result in hydrolysis of the polymeric backbone. The boronic acid‐tipped polymers were converted into star polymer assemblies using thermal dehydration and ligand‐facilitated trimerization. Thermal dehydration of (HO)2B‐PCL‐OAc to the corresponding boroxine‐based star polymer assembly was inefficient and lead to degradation products. Ligand‐facilitated trimerization using either pyridine or 7‐azaindole as the Lewis base was efficient and mild. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The synthesis via copper(I)‐catalyzed azide alkyne cycloaddition (CuAAC) of three new monomer derivatives of N‐vinyl‐2‐pyrrolidone (VP) carrying cyclic pyrrolidine, piperidine, and piperazine groups and the corresponding copolymers with unmodified VP is shown. The systems bearing pyrrolidine and piperidine displayed both thermo‐ and pH‐response, which has not been reported previously for a polymer with polyvinylpyrrolidone (PVP) backbone. A broad modulation of the LCST with the copolymer composition and pH was observed in a temperature range 0–100 °C. The polymers carrying piperazine exhibited broad buffering regions and no thermosensitivity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1098–1108  相似文献   

11.
Azide end‐functionalized polyhedral oligomeric silsesquioxane (POSS‐N3) was incorporated into the periphery of well‐defined alkyne‐polystyrene50‐poly(divinyl benzene) (alkyne‐PS50‐polyDVB) and alkyne‐poly(tert‐butyl acrylate)43‐poly(divinyl benzene) (alkyne‐PtBA43‐polyDVB) multiarm star polymers via highly efficient azide‐alkyne click reaction, resulting in POSS‐PS50‐polyDVB and POSS‐PtBA43‐polyDVB multiarm star block copolymers respectively, in the solution of tetrahydrofuran/N,N‐dimethyl formamide, CuBr/N,N,N,N,N″‐pentamethyldiethylenetriamine (PMDETA) at room temperature for 24 h. Linear precursors and star polymers obtained in this study were characterized 1H NMR, gel permeation chromatography (GPC), and triple detection GPC (TD‐GPC). Absolute molecular weight, hydrodynamic radius, and intrinsic viscosity ([η]) values for all star polymers were determined by TD‐GPC. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Novel electrochromic polymers were prepared by the click postfunctionalization of poly(4‐azidomethylstyrene) with alkyne‐containing aromatic amine units in the presence of Cu(I) catalysts. Two kinds of aromatic amine units, tris(4‐alkoxyphenyl)amine and N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine, were introduced into polystyrene side chains, which were completely characterized by gel permeation chromatography–multiangle light scattering, nuclear magnetic resonance, and infrared spectroscopies, and elemental analysis. Thermal analyses demonstrated the high stability with the decomposition temperatures exceeding 300 °C even after postfunctionalization. The UV–vis absorption spectra of the polymer thin films revealed negligible absorption in the visible region, as reasonably confirmed by visual observation. The polymer thin films were prepared by spray‐coating on an indium tin oxide‐coated glass plate. Cyclic voltammograms of these films exhibited anodic peaks ascribed to the oxidation of the side‐chain aromatic amine moieties. The tris(4‐alkoxyphenyl)amine unit displayed one‐step oxidation at 0.287 V (vs. Ag/AgCl), while the N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine unit showed two‐step oxidations at 0.297 and 0.641 V. These oxidation processes produced new colors of the polymer films. The former triarylamine‐based chromophore provided a blue color after the oxidation, while the latter phenylenediamine‐based chromophore showed a potentially controlled green and dark blue colors. The reversibility and switching behaviors of these color changes were also comprehensively investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A novel bifunctional acrylamido‐based reversible addition–fragmentation chain transfer (RAFT) chain‐transfer agent (CTA), N,N′‐ethylenebis[2‐(thiobenzoylthio)propionamide] (CTA2), has been synthesized and used for the controlled free‐radical polymerization of N,N‐dimethylacrylamide (DMA). A comparative study of CTA2 and the monofunctional CTA N,N‐dimethyl‐s‐thiobenzoylthiopropionamide (CTA1) has been conducted. Polymerizations mediated by CTA1 result in poly(N,N‐dimethylacrylamide) (PDMA) homopolymers with unimodal molecular weight distributions, whereas CTA2 yields unimodal, bimodal, and trimodal distributions according to the extent of conversion. The multimodal nature of the PDMAs has been attributed to termination events and/or chains initiated by primary radicals. The RAFT polymerization of DMA with CTA2 also results in a prolonged induction period that may be attributed to the higher local concentration of dithioester functionalities early in the polymerization. A series of ω‐ and α,ω‐dithioester‐capped PDMAs have been prepared in organic media and subsequently employed as macro‐CTAs for the synthesis of diblock and triblock copolymers in aqueous media with the zwitterionic monomer 3‐[2‐(N‐methylacrylamido)‐ethyldimethylammonio] propane sulfonate (MAEDAPS). Additionally, an ω‐dithioester‐capped MAEDAPS homopolymer has been used as a macro‐CTA for the block polymerization of DMA. To our knowledge, this is the first example of a near‐monodisperse, sulfobetaine‐containing block copolymer prepared entirely in aqueous media. The diblock and triblock copolymers form aggregates in pure water that can be dissociated by the addition of salt, as determined by 1H NMR spectroscopy and dynamic light scattering. In pure water, highly uniform, micellelike aggregates with hydrodynamic diameters of 71–93 nm are formed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1262–1281, 2003  相似文献   

14.
Novel acetylenic monomers containing Schiff‐base and amino groups, (S)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1a ), (R)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1b ), N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1c ), (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1d ), and (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1e ) were synthesized and polymerized with [(nbd)RhCl]2/Et3N catalyst to afford the corresponding polymers 2a ‐ e with moderate molecular weights (Mn = 9000–60,000) in high yields (85–97%). All the polymers were soluble in common organic solvents including toluene, CHCl3, CH2Cl2, THF, and DMF. Large optical rotations and strong CD signals demonstrated that 2a , 2b , 2d , and 2e take helical structures with a predominantly one‐handed screw sense. The effects of solvents and temperature revealed that these polymers took dynamic helical structure based on the steric effect of side groups. The CD patterns of 2d and 2e containing free amino moieties were completely inverted by the addition of benzoic acid. Upon further addition of NaOH, the CD pattern returned to the original one, indicating the reversible conformational change of these polymers according to pH. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5248–5256  相似文献   

15.
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002  相似文献   

16.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

17.
A tetrathia‐[7]‐helicene bearing in the 2 and 13 positions cyanovinyl groups was used as comonomer in the Michael‐type polyaddition reaction with N,N′‐bis(β‐mercaptoethyl)piperazine. This led to a new polymer bearing tetrathia‐[7]‐helicene units regularly distributed along the polymer backbone, which may be regarded as the first example of a new family of potentially useful nonlinear optical materials. All products were structurally characterized by 1H and 13C NMR spectroscopy. Differential scanning calorimetry characterizations revealed the presence, in both monomeric and polymeric helicenes, of glass‐transition like temperatures, associated to some conformational variation of the helicene units. The optical properties, the film formation and the morphology of the polymer‐containing tetratia‐[7]‐helicenes were also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Acid‐labile, thermoresponsive polymers with pendant six‐membered cyclic acetal groups were prepared by radical polymerization of two monomers, N‐(2,2‐dimethyl‐1,3‐dioxan‐5‐yl) methacrylamide (NDMM) and N‐(2,2‐dimethyl‐1,3‐dioxan‐5‐yl) acrylamide (NDMA). The aqueous solution properties of the polymers, PNDMM and PNDMA, were studied by turbidimetry, 1H NMR, fluorescence, and DSC measurements. It is found that both polymers show sensitive and reversible phase transitions with distinct lower critical solution temperatures (LCST). Below their LCSTs, there are still some polymer aggregates as evidenced by measurements of pyrene excitation spectra and urea effects on the cloud points (CP) of polymers. The salting effect of six inorganic sodium salts on the phase transition behavior of PNDMM was investigated by turbidimetric approach. The salting‐out to salting‐in effect is in the order of SO42? > F? > Cl? > Br? > I? > SCN?, following the Hofmeister's series. pH‐dependent hydrolysis of PNDMM and PNDMA was studied by turbidimetric and 1H NMR methods. They are both pH‐sensitive and their hydrolysis rates significantly increase with decreasing pH value. The CP of PNDMM gradually increases with the acid‐triggered hydrolysis of the acetal groups and the hydrolyzed polymer with ~ 30% hydrolysis degree does not show thermally induced phase transition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4332–4343, 2008  相似文献   

19.
Herein, we report the preparation of structured multistimuli‐responsive surfaces able to change reversibly both their chemical composition depending on the environment and their surface behavior by varying either/both the pH or/and the temperature. For that purpose, we took advantage of the surface segregation in homopolymer/diblock copolymer blends, composed of either polystyrene‐block‐poly(N,N′‐dimethylaminoethylmethacrylate) (PS‐b‐PDMAEMA) or polystyrene‐block‐poly (N,N′‐diethylaminoethylmethacrylate) (PS‐b‐PDEAEMA) and high molecular weight polystyrene used as a matrix. The variations of the surface composition as a function of the environment of exposure (air or water vapor) was investigated were investigated by XPS and contact angle measurements. The water‐annealed surfaces contain PDMAEMA or PDEAEMA at the surface and are additionally able to respond both to pH and temperature as demonstrated by the Wilhelmy technique. Both PDMAEMA and PDEAEMA can switch from a hydrophilic state to a collapsed hydrophobic state increasing the temperature above the LCST. More interestingly, as a result of the microphase separation of the block copolymers at the interface, the surfaces of the blends exhibit structuration. Thus, either micellar structures or “donut‐like” morphologies were obtained by using THF or toluene, respectively, as solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1952–1961, 2010  相似文献   

20.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号