共查询到20条相似文献,搜索用时 15 毫秒
1.
Luca Nuvoli Davide Sanna Valeria Alzari Daniele Nuvoli Vanna Sanna Luca Malfatti Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2016,54(14):2166-2170
Frontal polymerization was successfully used to synthesize copolymer hydrogels of poly(N‐vinylcaprolactam‐co‐itaconic acid). All materials were characterized by response to stimuli (pH and/or temperature), depending on the itaconic acid content. Namely, relatively low amounts of this latter were found to be crucial for determining the degree of swelling. In particular, hydrogels behave differently if swollen at pH values that are higher or lower of 7–8, and exhibit temperature response as well (lower critical solution temperature at ca. 30 °C), which makes these materials potentially interesting for biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2166–2170 相似文献
2.
Sergio Scognamillo Valeria Alzari Daniele Nuvoli Javier Illescas Salvatore Marceddu Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2011,49(5):1228-1234
Super water absorbent polymer hydrogels were synthesized by frontal polymerization. These materials were obtained by copolymerizing N‐isopropyl acrylamide (NIPAAm) and 3‐sulfopropyl acrylate potassium salt (SPAK) in the presence of N,N′‐methylene‐bis‐acrylamide as a crosslinker. It was found that their swelling behavior in water can be easily tuned by using either the appropriate monomer ratio or the amount of the crosslinker used. Namely, the swelling ratio was found to range from about 1000% for the NIPAAm homopolymer in the presence of 5.0 mol % of crosslinker, up to 35,000% for the sample containing 87.5 mol % of SPAK and 1.0 mol % of crosslinker. The affinity toward water was also confirmed by contact angle analysis. Moreover, the obtained hydrogels exhibit a thermoresponsive behavior, with a lower critical solution temperature of about 28–30 °C. This value is close to that of poly(NIPAAm) but with a swelling capability that dramatically increases as the amount of SPAK increases. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
3.
Roberta Sanna Valeria Alzari Daniele Nuvoli Sergio Scognamillo Salvatore Marceddu Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2012,50(8):1515-1520
In this work, we report on the synthesis and characterization of homopolymers and copolymers of acrylic acid and 2‐hydroxyethyl acrylate prepared by the use of the frontal polymerization (FP) technique. Tetraethyleneglycoldiacrylate was used as a crosslinker and benzoyl peroxide as an initiator. The maximum temperatures reached by the front were in the range between 214 °C and 296 °C. Besides, front velocities ranged between 3.9 and 10.8 cm/min, the latter being one of the highest values reported so far in the FP literature. Differential scanning calorimetry was used to estimate the conversion degree, which was always comprised between 90% and 96%, and to determine the glass transition temperatures, which were found to be dependent on the composition, with values ranging from 13 °C to 168 °C. Moreover, the obtained materials were allowed to swell in aqueous solutions at various pH. The samples exhibit a moderate increase of the swelling ratio percentage (SR%) at pH ≈ 5–6, and a sudden and larger SR% increase at pH ≈ 12–13 depending on the composition, thus indicating the obtainment of pH‐responsive polymer hydrogels. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
4.
Giuseppe Caria Valeria Alzari Orietta Monticelli Daniele Nuvoli Josè M. Kenny Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2009,47(5):1422-1428
Frontal polymerization (FP) has been used as an alternative technique for the preparation of poly(N,N‐dimethylacrylamide) hydrogels. Samples were synthesized in bulk, water, or dimethyl sulfoxide (DMSO), and the obtained materials were characterized and compared in terms of their yield, swelling behavior, thermal properties, and morphology. It was found that their features are dependent on the presence and type of the solvent used. Samples prepared in bulk are characterized by the lowest yields and the highest front temperatures (Tmax) and velocities (Vf), whereas those synthesized in water have the highest yields and the lowest values of Tmax and Vf. No significant differences have been found in terms of Tg among the three series of samples. By contrast, the reaction conditions influenced the porous morphology of the samples and, consequently, their swelling capability in water. The swelling ratio ranges from about 670–700% for some samples prepared in water up to 3500% for a sample obtained in DMSO, thus indicating that this parameter can be properly tuned by using the most suitable FP conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1422–1428, 2009 相似文献
5.
Roberta Sanna Davide Sanna Valeria Alzari Daniele Nuvoli Sergio Scognamillo Massimo Piccinini Massimo Lazzari Emilia Gioffredi Giulio Malucelli Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4110-4118
Thermoresponsive poly(N‐vinylcaprolactam) nanocomposite hydrogels containing graphene were successfully prepared by frontal polymerization. High concentration of graphene (5.0 mg/mL) was obtained by direct graphite sonication in the self‐same liquid monomer, thus avoiding any chemical manipulation and obtaining “real” graphene as nanofiller instead of one of its more or less oxidized derivative, which is what generally reported in published reports. Furthermore, the corresponding nanocomposites were obtained without using any solvent to be eventually removed. The materials were fully characterized by RAMAN, SEM, and TEM, and their swelling behavior and rheological properties were investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
6.
Si‐Si Liu Zi‐Yi Yu Yuan Fang Su‐Na Yin Cai‐Feng Wang Li Chen Su Chen 《Journal of polymer science. Part A, Polymer chemistry》2011,49(14):3121-3128
In this work, a dually sensitive colloidal crystal (CC)‐loaded hydrogel has been synthesized via frontal polymerization (FP) in a facile and rapid way. First, a polystyrene CC film was fabricated by vertical deposition on the inner wall of a test tube. Then, a mixture of acrylic acid (AAc), 2‐hydroxyethyl methacrylate (HEMA), and glycerol along with the initiator and crosslinker was added to this test tube to carry out FP, resulting in the formation of CC‐loaded hydrogel. The influence of the mass ratios of HEMA/AAc on front velocity and temperatures were studied. The swelling behavior, the morphology, and the stimuli‐responsive behavior of the CC‐loaded hydrogels prepared via FP were thoroughly investigated on the basis of swelling measurement, scanning electron microscopy, and reflection spectra. Results show that the as‐prepared CC‐loaded hydrogels exhibit excellent dual sensitivity to both methanol concentrations and pH values with very short response time, which can be observed visually without the aid of instruments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
7.
Valeria Alzari Alberto Mariani Orietta Monticelli Luca Valentini Daniele Nuvoli Massimo Piccinini Sergio Scognamillo Silvia Bittolo Bon Javier Illescas 《Journal of polymer science. Part A, Polymer chemistry》2010,48(23):5375-5381
In this work, a new stimuli‐responsive composite polymer hydrogel containing partially exfoliated graphite was prepared by frontal polymerization. The materials obtained were characterized by differential scanning calorimetry, RAMAN, scan electron microscopy, transmission electron microscopy, atomic force microscopy, and in terms of swelling behavior. It was found that the maximum temperature reached by the polymerization front and the lower critical solution temperature are affected by the graphite content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
8.
Valeria Alzari Daniele Nuvoli Mariano Casu Roberta Sanna Ernesto Rivera Alberto Mariani 《Journal of polymer science. Part A, Polymer chemistry》2013,51(21):4618-4625
Novel polyacrylamide‐based hydrogels containing 3‐(trimethoxysilyl)propyl methacrylate and/or tetraethoxy silane were synthesized by means of frontal polymerization, using ammonium persulfate as initiator, N,N′‐methylene bisacrylamide as crosslinking agent and dimethyl sulfoxide as solvent. The obtained samples were treated at pH of 2 or 5 to induce the sol–gel reaction and evaluate their swelling behavior in the conditions. The occurrence of this reaction was assessed by solid‐state NMR. Moreover, the thermal properties of the dry materials were studied by differential scanning calorimetry and thermal gravimetric analysis, and their water‐contact angles were measured. It was found that the amount of Si affects the extent of swelling and the hydrophilicity of the resulting materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4618–4625 相似文献
9.
Cong‐Duan Vo Julien Rosselgong Steven P. Armes Nicola Tirelli 《Journal of polymer science. Part A, Polymer chemistry》2010,48(9):2032-2043
Homopolymerization and diblock copolymerization of 2‐hydroxypropyl acrylate (HPA) has been conducted using reversible addition fragmentation chain transfer (RAFT) chemistry in tert‐butanol at 80 °C. PHPA homopolymers were obtained with high conversions and narrow molecular weight distributions over a wide range of target degrees of polymerization. Like its poly(2‐hydroxyethyl methacrylate) isomer, PHPA homopolymer exhibits inverse temperature solubility in dilute aqueous solution, with cloud points increasing systematically on lowering the mean chain length. The nature of the end groups is shown to significantly affect the cloud point, whereas no effect of concentration was observed over the PHPA concentration range investigated. Various thermoresponsive PHPA‐based diblock copolymers were prepared via one‐pot syntheses in which the second block was either permanently hydrophilic or pH‐responsive. Preliminary studies confirmed that poly(ethylene oxide)‐poly(2‐hydroxypropyl acrylate) (PEO45‐PHPA48) and poly(2‐hydroxypropyl acrylate)‐ poly(2‐hydroxyethyl acrylate) (PHPA49‐PHEA68)diblock copolymers formed well‐defined PHPA‐core micelles in 10 mM sodium nitrate solution at 40 °C and 70 °C with mean hydrodynamic diameters of 20 nm and 35 nm, respectively. In contrast, most other PHPA‐based diblock copolymers investigated formed larger colloidal aggregates in 10 mM NaNO3 solution at elevated temperatures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2032–2043, 2010 相似文献
10.
Erandimala U. Kulawardana Thilini Kuruwita‐Mudiyanselage Douglas C. Neckers 《Journal of polymer science. Part A, Polymer chemistry》2009,47(13):3318-3325
Stimuli responsive hydrogels (PNIPAAm‐MSp) with a thermoresponsive backbone and photochromic pendant groups were synthesized via free radical polymerization using N‐isopropylacrylamide, modified spironaphthoxazines with a polymerizable double bond (MSp) as photochromic monomer, the crosslinker N,N′‐methylenebis(acrylamide) and the initiator 2,2′‐azobis(isobutyronitrile) in dimethylsulfoxide. The polymers are dual responsive, in that poly(N‐isopropylacrylamide) (PNIPAAm) responds to temperature changes whereas the pendant spironaphthoxazines respond to light. Irradiation enhanced the water absorption of the polymers while increases in temperature decreased it. The irradiated PNIPAAm‐MSp showed best water absorption at 0 °C (Q = 3.25) while water desorbed at higher temperatures (35 °C; Q = 0.30); where Q is the amount of water absorbed by a gram of dry polymer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3318–3325, 2009 相似文献
11.
Jun Tu Jin Zhou Cai‐Feng Wang Qiang Zhang Su Chen 《Journal of polymer science. Part A, Polymer chemistry》2010,48(18):4005-4012
We report a new facile strategy for quickly synthesizing pH sensitive poly(VI‐co‐HEA) hydrogels (VI = N‐vinylimidazole; HEA = 2‐hydroxyethyl acrylate) by frontal polymerization. The appropriate amounts of VI, HEA, and ammonium persulfate (APS)/N,N,N′,N′‐tetramethylethylenediamine (TMEDA) couple redox initiator were mixed together at ambient temperature in the presence of glycerol as the solvent medium. Frontal polymerization (FP) was initiated by heating the upper side of the mixture with a soldering iron. Once initiated, no further energy was required for the polymerization to occur. The dependence of the front velocity and front temperature on the VI/HEA weight ratios were investigated. The pH sensitive behavior, morphology, and heavy metal removal study of poly(VI‐co‐HEA) hydrogels prepared via FP were comparatively investigated on the basis of swelling measurements, scanning electron microscopy, and inductively coupling plasma spectrometer. Results show that the poly(VI‐co‐HEA) hydrogels prepared via FP exhibit good pH sensitivity and adsorption capacity. The FP can be exploited as an alternative means for synthesis of pH sensitive hydrogels in a fast and efficient way. The as‐prepared hydrogels can be applied to remove heavy metals. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4005–4012, 2010 相似文献
12.
Thermoresponsive star triblock copolymers by combination of ROP and ATRP: From micelles to hydrogels
Weipu Zhu Alper Nese Krzysztof Matyjaszewski 《Journal of polymer science. Part A, Polymer chemistry》2011,49(9):1942-1952
Novel biocompatible, biodegradable, four‐arm star, triblock copolymers containing a hydrophobic poly(ε‐caprolactone) (PCL) segment, a hydrophilic poly(oligo(ethylene oxide)475 methacrylate) (POEOMA475) segment and a thermoresponsive poly(di(ethylene oxide) methyl ether methacrylate) (PMEO2MA) segment were synthesized by a combination of controlled ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, a four‐arm PCL macroinitiator [(PCL‐Br)4] for ATRP was synthesized by the ROP of ε‐caprolactone (CL) catalyzed by stannous octoate in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2‐bromoisobutyryl bromide. Then, sequential ATRP of oligo(ethylene oxide) methacrylate (OEOMA475, Mn = 475) and di(ethylene oxide) methyl ether methacrylate) (MEO2MA) were carried out using the (PCL‐Br)4 tetrafunctional macroinitiator, in different sequence, resulting in preparation of (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 and (PCL‐b‐PMEO2MA‐b‐POEOMA475)4 star triblock copolymers. These amphiphilic copolymers can self‐assemble into spherical micelles in aqueous solution at room temperature. The thermal responses of the polymeric micelles were investigated by dynamic light scattering and ultraviolet spectrometer. The properties of the two series of copolymers are quite different and depend on the sequence distribution of each block along the arms of the star. The (PCL‐b‐POEOMA475‐b‐PMEO2MA)4 star copolymer, with the thermoresponsive PMEO2MA segment on the periphery, can undergo reversible sol‐gel transitions between room temperature (22 °C) and human body temperature (37 °C). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
13.
Soliman Mehawed Abdellatif Soliman Cécile Nouvel Jérôme Babin Jean‐Luc Six 《Journal of polymer science. Part A, Polymer chemistry》2014,52(15):2192-2201
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201 相似文献
14.
A series of pyrrolidone‐based polymers is prepared from pyroglutamic acid, a bio‐derived resource. Polymers bearing simple alkoxy substituents (e.g., methoxy, ethoxy, and butoxy) are soluble in common organic solvents and possess glass transition temperatures that are dependent on the length of the alkoxy residue. Replacing these substituents with an ether moiety (CH3OCH2CH2O—) affords a highly sensitive and reversible thermoresponsive polymer with a lower critical solution temperature (LCST) of 42 °C in water. Copolymers composed of repeat units bearing both the ether and simple alkoxy residues are found to exhibit LCSTs that are highly dependent on the nature of the hydrophobic alkoxy residue suggesting that the LCSTs of these polymers can be successfully tuned by simply tailoring the copolymer structure. 相似文献
15.
Poly(N-isopropylacrylamide) (PNIPA) hydrogels with varied degree of crosslinking (DC) were synthesized by using poly(ethylene glycol) (PEG) as an additive. A phase separated ("macroporous") morphology was formed when using PEG contents of > or = 20 wt.-%. Temperature-dependent degrees of swelling had been measured, and average mesh sizes of the swollen polymer network had been calculated. The loading of the hydrogels with labelled dextrans with various molar masses and bovine serum albumin (BSA)-via swelling of the shrunken gel in a cold solution-and their subsequent unloading-via immersion in hot water-were studied in detail. The loading efficiencies were close to zero for PNIPA prepared at PEG contents of < or = 10 wt.-%, and they increased sharply to about 100% for PNIPA prepared with PEG contents of > or = 20 wt.-%. A complete unloading was achieved as well. For macroporous PNIPA prepared at 40 wt.-% PEG content, the loading efficiency was a function of the DC, and the "cut-off" observed as a function of dextran or protein size correlated with the mesh size of the hydrogel. The function of these "smart" hydrogels can be explained by the temperature-induced "pumping" of the solution into the gel bulk via the permanent pores, along with an uptake into the adjacent hydrogel network. Those materials could be used as matrices for the efficient and reversible immobilization of (bio)macromolecules. 相似文献
16.
Tripodo G Pitarresi G Palumbo FS Craparo EF Giammona G 《Macromolecular bioscience》2005,5(11):1074-1084
In this work, INU, a natural polysaccharide, has been chemically modified in order to obtain new photocrosslinkable derivatives. To reach this goal, INU has been derivatized with MA thus obtaining four samples (INU-MA derivatives) as a function of the temperature and time of reaction. An aqueous solution of the derivative INU-MA1 was irradiated by using a UV lamp with an emission range from 250 to 364 nm and without using photoinitiators. The obtained hydrogel showed a remarkable water affinity but it underwent a partial degradation in simulated gastric fluid. To overcome this drawback, INU-MA1 was derivatized with SA thus obtaining the INU-MA1-SA derivative designed to produce a hydrogel showing a low swelling and an increased chemical stability in acidic medium. Ibuprofen, as a model drug, was loaded by soaking into INU-MA1 and INU-MA1-SA hydrogels and its release from these matrices was evaluated in simulated gastrointestinal fluids. INU-MA1 hydrogel showed the ability to quickly release the entrapped drug thus indicating its potential as a matrix for an oral formulation. INU-MA1-SA hydrogel showed a pH-responsive drug delivery. Therefore it is a promising candidate for controlled drug release in the intestinal tract. 相似文献
17.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(13):1412-1423
Frontal polymerization (FP) is applied for the synthesis of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers. The dependence of frontal velocity and temperature on the initiator and cross‐linker are discussed. The synthesized copolymers have been characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The thermo‐pH dual‐stimuli responsive behavior of the hydrogel is determined by swelling measurement at different temperatures and pH values. Besides, the hydrogels show intrinsic self‐healing behavior and their healing efficiency is determined by the mechanical tests. Interestingly, we integrate FP with microfluidic technology, which may realize the execution of FP under continuous condition. Such simple microfluidics‐FP integrated approach has both methodological and practical value for the synthesis of functional materials. This paper mainly presents the synthesis and characterization of β‐cyclodextrin/poly(vinylimidazole‐co‐N‐vinylcaprolactam‐co‐acrylic acid) (β‐CD/P(VI‐co‐NVCL‐co‐AA)) copolymers by using thermal frontal polymerization (TFP). Hydrogels were found to be self‐healing with good mechanical performance and show dual thermo‐pH responsive behavior. Low‐cost, energy‐saving and efficient method of thermal frontal polymerization process was integrated with microfluidics technology to prepare supraball hydrogel. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1412–1423 相似文献
18.
19.
Yan Pang Qi Zhu Dongliang Zhou Jinyao Liu Yan Chen Yue Su Deyue Yan Xinyuan Zhu Bangshang Zhu 《Journal of polymer science. Part A, Polymer chemistry》2011,49(4):966-975
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
20.
Maxime Ranger Marie‐Christine Jones Marie‐Andre Yessine Jean‐Christophe Leroux 《Journal of polymer science. Part A, Polymer chemistry》2001,39(22):3861-3874
The synthesis of well‐defined diblock copolymers by atom transfer radical polymerization (ATRP) was explored in detail for the development of new colloidal carriers. The ATRP technique allowed the preparation of diblock copolymers of poly(ethylene glycol) (PEG) (number‐average molecular weight: 2000) and ionic or nonionizable hydrophobic segments. Using monofunctionalized PEG macroinitiator, ionizable and hydrophobic monomers were polymerized to obtain the diblock copolymers. This polymerization method provided good control over molecular weights and molecular weight distributions, with monomer conversions as high as 98%. Moreover, the copolymerization of hydrophobic and ionizable monomers using the PEG macroinitiator made it possible to modulate the physicochemical properties of the resulting polymers in solution. Depending on the length and nature of the hydrophobic segment, the nonionic copolymers could self‐assemble in water into nanoparticles or polymeric micelles. For example, the copolymers having a short hydrophobic block (5 < degree of polymerization < 9) formed polymeric micelles in aqueous solution, with an apparent critical association concentration between 2 and 20 mg/L. The interchain association of PEG‐based polymethacrylic acid derivatives was found to be pH‐dependent and occurred at low pH. The amphiphilic and nonionic copolymers could be suitable for the solubilization and delivery of water‐insoluble drugs, whereas the ionic diblock copolymers offer promising characteristics for the delivery of electrostatically charged compounds (e.g., DNA) through the formation of polyion complex micelles. Thus, ATRP represents a promising technique for the design of new multiblock copolymers in drug delivery. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3861–3874, 2001 相似文献