首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
The RAHB systems in malonaldehyde and its derivatives at MP2/ 6‐311++G(d,p) level of theory were studied and their intramolecular hydrogen bond energies by using the related rotamers method was obtained. The topological properties of electron density distribution in O? H···O intramolecular hydrogen bond have been analyzed in term of quantum theory of atoms in molecules (QTAIM). Correlations between the H‐bond strength and topological parameters are probed. The results of QTAIM clearly showed that the linear correlation between the electron density distribution at HB critical point and RAHB ring critical point with the corresponding hydrogen bond energies was obtained. Moreover, it was found a linear correlation between the electronic potential energy density, V(rcp), and hydrogen bond energy which can be used as a simple equation for evaluation of HB energy in complex RAHB systems. Finally, the similar linear treatment between the geometrical parameters, such as O···O or O? H distance, and Lp(O)→σ*OH charge transfer energy with the intramolecular hydrogen bond energy is observed. © 2010 Wiley Periodicals, Inc., Int J Quantum Chem, 2011  相似文献   

3.
The molecular structure and the intramolecular hydrogen bonding of β‐aminoacrolein and its simple derivatives were investigated at the MP2 and B3LYP levels of theory using the standard 6‐311++G(d, p) basis set. The “atoms in molecules” or AIM theory of Bader which is based on topological properties of the electron density (ρ), was used. Additionally, an analysis of the critical points was performed to study the nature hydrogen bonding in these systems. Natural bond orbital (NBO) analysis was also carried out for to better comprehend the nature of the intramolecular interactions in β‐aminoacrolein and its derivatives. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

4.
Conformational study of trifluoroacetylacetone was carried out using the HF, B3LYP, and MP2 methods with the 6‐31G(d, p) and 6‐311++G(d, p) basis sets. All of the results show that the chelated enol structures (E11 and E31) have extra stability with respect to the other forms and one of them (E11) is global minimum. The energy gap between the chelated forms is in the range 0.7–5.9 kJ mol?1. Theoretical calculations show that this compound has an asymmetric double minimum potential energy surface which is in contrast with the electron diffraction result. Moreover, the computational results predict that due to the withdrawing effect of CF3 group, hydrogen bond in trifluoroacetylacetone is weaker than the acetylacetone. Because of the more stability of E11, it is expected that the hydrogen bond energy in E11 is greater than the E31, but at all of the computational levels with most extended basis set the converse results were observed. These results clearly show that the hydrogen bond is not a superior parameter in conformational preference and the contribution of resonance is probably greater than the hydrogen bond. Finally, the analysis of this system by quantum theory of atoms in molecules and natural bond orbital methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
The effect of some substituents on intramolecular hydrogen bonding of 5‐X‐2‐hydroxybenzaldehyde (5‐X‐2‐HBA) has been studied by B3LYP and MP2 methods using 6‐311++G** and AUG‐cc‐PVTZ basis sets. The relationship between hydrogen bond energy EHB and electron donation (or withdrawal) of substituents has been investigated. An approximately good linear relationship has been detected between Hammett coefficients and hydrogen bond formation energy (R2 = 0.98). Herein, population analysis has been performed by atoms in molecules (AIM) and natural bond orbital (NBO) methods. The results of AIM and NBO analyses are in a good agreement with calculated energy values. Furthermore, correlation between ring aromaticity and hydrogen bonding has been investigated by nucleus‐independent chemical shift (NICS) at GIAO/B3LYP/6‐311++G** level of theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

6.
The conformational study of 3‐aminoacrylaldehyde were performed at various theoretical levels and the equilibrium conformations were determined. Furthermore, to have more reliable energies, the total energies of all forms recomputed at G2MP2 and CBS‐QB3. Theoretical calculations clearly show that the intramolecular hydrogen bond (IHB) is the origin of conformational preference and the resultant IHB order at HF/6‐311++G(d,p), MP2/6‐311++G(d,p), and CBS‐QB3 levels is different from the order which obtained from the B3LYP/6‐311++G(d,p), G2MP2, the geometrical parameters, AIM, and NBO analyses. Furthermore, our theoretical results reveal that the ketoamine (KA) tautomeric group is more stable than the enolimine (EI) and ketoimine (KI) ones. The IHB and tautomeric process could not rationalize the irregular stability of KA group with respect the others. But the population analyses of the possible conformations by NBO predict that the π‐electron delocalization, especially unusual π → π charge transfer, is the origin of tautomeric preference. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
Intramolecular H‐bonds existing for derivatives of 3‐imino‐propenylamine have been studied using the B3LYP/6‐311++G** level of theory. The nature of these interactions, known as resonance‐assisted hydrogen bonds, has been discussed. Vibrational frequencies for α‐derivatives were calculated at the same level of theory. The topological properties of the electron density distributions for N? H···N intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Calculation for 3‐imino‐propenylamine derivatives in water solution were also carried out at B3LYP/6‐311++G** level of theory. Finally, the analysis of hydrogen bond in this molecule and their derivatives by quantum theory of natural bond orbital methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

8.
MP2 study of O? H…N intramolecular hydrogen bond (IMHB) in 3‐imino‐propen‐1‐ol and its derivatives were performed and their IMHB energies were obtained using the related rotamers and open‐close methods. Also the topological properties of electron density distribution and charge transfer energy associated with IMHB were gained by quantum theory of atoms in molecules and natural bond orbital theory, respectively. The computational results reveal that the related rotamers method energies are well correlates with geometrical parameters, topological parameters at hydrogen bond and ring critical points, integrated properties, proton transfer barrier and charge transfer energy of O? H…N unit. Surprisingly, it was found that the open‐close hydrogen bond energies cannot represent good linear correlations with these parameters. Consequently, we extrapolate a number of equations that can be used in estimation of O? H…N IMHB energy in complex biological systems. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

9.
The molecular structure and intramolecular hydrogen bond energy of 32 conformers of 4‐methylamino‐3‐penten‐2‐one were investigated at MP2 and B3LYP levels of theory using the standard 6–31G** basis set and AIM analyses. Furthermore, calculations for all the possible conformations of 4‐methylamino‐3‐penten‐2‐one in water solution were also carried out at B3LYP/6–31G** level of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the ketoamine conformers of this compound are more stable than the other conformers (i.e., enolimine and ketoimine). This stability is mainly due to the formation of a strong N? H···O intramolecular hydrogen bond, which is assisted by π‐electrons resonance. Hydrogen bond energies for all conformers of 4‐methylamino‐3‐penten‐2‐one were obtained from the related rotamers method. The nature of intramolecular hydrogen bond existing within 4‐methylamino‐3‐penten‐2‐one has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. The results of these calculations support the results which obtained by related rotamers method. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

10.
All the possible conformations of tautomeric structures (keto and enol) of acetylacetaldehyde (AAD) were fully optimized at HF, B3LYP, and MP2 levels with 6‐31G(d,p) and 6‐311++G(d,p) basis sets to determine the conformational equilibrium. Theoretical results show that two chelated enol forms have extra stability with respect to the other conformers, but identification of global minimum is very difficult. The high level ab initio calculations G2(MP2) and CBS‐QB3) also support the HF conclusion. It seems that the chelated enol forms have equal stability, and the energy gap between them is probably lies in the computational error range. Finally, the analysis of hydrogen bond in these molecules by quantum theory of atoms in molecules (AIM) and natural bond orbital (NBO) methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

11.
Ab initio calculations at the MP2/6‐311++G** level of theory led recently to the identification of 13 stable conformers of gaseous glycine with relative energies within 11 kcal/mol. The stability of every structure depends on subtle intramolecular effects arising from conformational changes. These intramolecular interactions are examined with the tools provided by the Atoms In Molecules (AIM) theory, which allows obtaining a wealth of quantum mechanics information from the molecular electron density ρ( r ). The analysis of the topological features of ρ( r ) on one side and the atomic properties integrated in the basins defined by the gradient vector field of the density on the other side makes possible to explore the different intramolecular effects in every conformer. The existence of intramolecular hydrogen bonds on some conformers is demonstrated, while the presence of other stabilizing interactions arising from favorable conformations is shown to explain the stability of other structures in the potential energy surface of glycine. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 702–716, 2001  相似文献   

12.
Density functional calculations with Beck's three‐parameter hybrid method using the correlation functional of Lee, Yang, and Parr (B3LYP) were carried out for investigation of the intramolecular hydrogen bond strength in Nitroso‐oxime methane and its derivatives. Also, vibrational frequencies for them were calculated at the same level of theory. The π‐electron delocalization parameter (Q) and as a geometrical indicator of a local aromaticity, the geometry‐based harmonic oscillator measure of aromaticity index has been applied. Additionally, the linear correlation coefficients between substituent constants and selected parameters in R position have calculated. The obtained results show that the hydrogen bond strength is mainly governed by the resonance variations inside the chelate ring induced by the substituent groups. The topological properties of the electron density distributions for O? H ··· O intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules (AIM). Correlations between the H‐bond strength and topological parameters have been also studied. The electron density (ρ) and Laplacian (?2ρ) properties, estimated by AIM calculations, show that O ··· H bond have low ρ and negative (?2ρ) values (consistent with covalent character of the HBs), whereas O? H bond have positive (?2ρ) Furthermore, the analysis of hydrogen bond in this molecule and its derivatives by quantum theory of natural bond orbital (NBO) methods fairly support the ab initio results. Natural population analysis data, the electron density, and Laplacian properties as well as υ(O? H) and γ(O? H) were further used for estimation of the hydrogen bonding interactions and the forces driving their formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

13.
The intramolecular hydrogen bond strength of 3‐hydroxy‐propenethial (HPT) as well as the fluoro, chloro, bromo, and methyl derivatives were investigated at the B3LYP/6‐311++G** level of theory. Solvent‐based calculations (in water) for HPT and derivatives were also carried out. The nature of the intramolecular hydrogen bond existing within the molecular under investigation has been studied by means of the Bader theory of atoms in molecules (AIM) that is based upon the use topological properties in terms of the electron density. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
HF, B3LYP, and MP2 methods with the standard basis set, 6‐311++G(d,p), were used to study various aspects of dinitrosamine. These results were compared with the outcomes of G2 and CBS‐QB3 methods. First, the conformational analysis and characterization of equilibrium conformations, especially global minima, were performed. On the basis of relative energies, we found that the dinitroso tautomers are more stable than the nitroso‐hydroxy (NH) ones. This preference is well‐interpreted in terms of tautomerization process and nitrosamine resonance. Furthermore, the nature of O? H···O intramolecular hydrogen bond (IMHB), in chelated forms of NH (NH‐11 and NH‐13) was comprehensively studied to evaluate the effect of hetero atoms (N) on the characteristic of IMHB systems. According to the results of isodesmic reaction method, the hydrogen bond energy of NH‐11 is greater than the malonaldehyde (MA) and NH‐13, whereas the electron density analysis and energy‐geometry correlation methods clearly predict that the hydrogen bond of NH‐11 is weaker than the MA. Additionally, the geometrical, atoms in molecules (AIM) and natural bond orbital's (NBO) parameters also emphasize on the MA as a chelated form with the strongest hydrogen bond. Finally, the solvent effects on the relative stability of selected dinitrosamine conformers are evaluated by different continuum (polarizable‐continuum model, isodensity polarizable continuum model, and self‐consistent isodensity polarizable continuum model), discrete and mixed solvent models. Theoretical results readily show that the potential energy surface of dinitrosamine, especially global minima, is strongly affected by the solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Intramolecular H‐bonds existing for derivatives of 3‐amino‐propenethial have been studied using the B3LYP/6‐311++G** level of theory. The nature of these interactions, known as resonance assisted hydrogen bonds, has been discussed. The topological properties of the electron density distributions for N—H—S intramolecular bridges have been analyzed in terms of the Bader theory of atoms in molecules. Correlations between the H‐bond strength and topological parameters have been also studied. Furthermore, we obtained the exact value of the intramolecular hydrogen bond energies by the related rotamers method. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
Intermolecular hydrogen bonding in X3CH···NH3 (X = H, F, Cl, and Br) complexes has been studied by B3LYP, B3PW91, MP2, MP3, MP4, and CCSD methods using 6‐311++G(d,p) and AUG‐cc‐PVTZ basis sets. These complexes could exist in both eclipsed (EC) and staggered (ST) forms. The differences between binding energies of EC and ST forms are negligible and all EC and ST shapes correspond to minimum stationary states. The order of stabilities of them is in an agreement with the results of atoms in molecules (AIM) and natural bond orbital (NBO) analyses. On the basis of low differences between binding energies, ST forms are more stable than EC forms in all complexes with the exception of Br3CH···NH3, which behaves just opposite. Although the differences between binding energies are negligible, they are consistent with the results of AIM analysis. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
All the plausible conformations of β-aminoacrolein (AMAC) have been investigated by the Bekes-Lee-Yang-Parr (B3LYP) nonlocal density functional with extended 6-311++G** basis set for studying the stability order of conformers and the various possibilities of intramolecular hydrogen bonding formation. In general the ketoamine (KA) conformers of AMAC, by mean average, are more stable than the corresponding enolimine (EI) and ketoimine (KI) analogues and this stability is mainly due to the π-electron resonance in these conformers that established by NH2 functional group. The contribution of resonance to the stability of chelated KA conformers is about 75.6 kJ/mol, which is greater than that of the hydrogen bond energy (EHB=35.0 kJ/mol). The relative decreasing order of the various hydrogen bond energies was found to be: O–HNimine(strong)>Namine-HOketo (normal)>Nimine-HOhydroxyl (weak) > Nimine-HOketo (weak). Hydrogen bond energies for all systems were obtained from the method that we called related rotamers method (RRM). The topological properties of the electron density contributions for various type of intramolecular hydrogen bond have been analyzed in term of the Bader theory of atoms in molecules (AIM). The results of these calculations support the previous calculations, which obtained by the related rotamer methods.  相似文献   

18.
Systematic and extensive conformational search has been performed to characterize the gas‐phase N,N‐dimethylaminopropanol structures. A total of 91 unique trail structures were generated by allowing for all the single‐bond rotamers. All the trial structures were initially optimized at the AM1 level, and the resulting structures were optimized at the B3LYP/6‐311G* level of theory and then subjected to further optimization at the B3LYP/6‐311++G**. A total of 36 conformers are found and their zero‐point vibrational enegies, rotational constants, and dipole moments are determined. Vertical ionization energies of 11 low‐lying conformers predicted with the electron propagator theory are in good agreement with the experimental data. The two most stable conformers display intramolecular H bonds (HBs): OH···N. These HBs influence on the molecular electronic structures is exhibited by natural bond orbital analyses. Combined with statistical mechanics principles, conformational distributions at various temperatures are computed and the temperature dependence of photoelectron spectra is interpreted. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
The relationships among geometrical parameters, estimated binding energies, and nuclear magnetic resonance data in –C?O···H? O? intramolecular H‐bond of some substituted 2‐hydroxybenzaldehyde have theoretically been studied by B3LYP and MP2 methods with 6‐311++G** and AUG‐cc‐PVTZ basis sets. All substituents increase estimated hydrogen bond energies EHBs (with the exception of NO2 and C2H5), which are in good correlation with geometrical parameters, topological properties of electron density calculated at O···H bond critical points and ring critical points by using atoms in molecules method, the results of natural bond orbital analysis, and calculated nuclear magnetic resonance data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
The nonadditivity of methyl group in the single‐electron hydrogen bond of the methyl radical‐water complex has been studied with quantum chemical calculations at the UMP2/6‐311++G(2df,2p) level. The bond lengths and interaction energies have been calculated in the four complexes: CH3? H2O, CH3CH2? H2O, (CH3)2CH? H2O, and (CH3)3C? H2O. With regard to the radicals, tert‐butyl radical forms the strongest hydrogen bond, followed by iso‐propyl radical and then ethyl radical; methyl radical forms the weakest hydrogen bond. These properties exhibit an indication of nonadditivity of the methyl group in the single‐electron hydrogen bond. The degree of nonadditivity of the methyl group is generally proportional to the number of methyl group in the radical. The shortening of the C···H distance and increase of the binding energy in the (CH3)2CH? H2O and (CH3)3C? H2O complexes are less two and three times as much as those in the CH3CH2? H2O complex, respectively. The result suggests that the nonadditivity among methyl groups is negative. Natural bond orbital (NBO) and atom in molecules (AIM) analyses also support such conclusions. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号