首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, successful polymer coating of COOH‐functionalized multiwalled carbon nanotubes (MWCNTs) via reversible addition fragmentation chain transfer (RAFT) mediated emulsion polymerization is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for MWCNT dispersions, followed by their subsequent coating with poly(methyl methacrylate‐co‐butyl acrylate). Poly(allylamine hydrochloride) was initially used to change the charge on the surface of the MWCNTs to facilitate adsorption of negatively charged macro‐RAFT copolymer onto their surface via electrostatic interactions. After polymerization, the resultant latex was found to contain uniform polymer‐coated MWCNTs where polymer layer thickness could be controlled by the amount of monomer fed into the reaction. The polymer‐coated MWCNTs were demonstrated to be dispersible in both polar and nonpolar solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A new photoresponsive amphiphilic triblock copolymer, poly(pyrenylmethyl methacrylate)‐block‐polystyrene‐block‐poly(ethylene oxide) (PPy‐b‐PSt‐b‐PEO), was synthesized using atom‐transfer radical polymerization. Formation of colloidal aggregates of the polymer was observed in solutions under controlled conditions due to the amphiphilic nature of the polymer. Irradiation of the polymer aggregates using UV light resulted in the photodissociation of 1‐pyrenemethanol units from the polymer back‐bone resulting in break‐up of the aggregates mainly due to the hydrophilic nature of the residual polymer. The use of these polymer aggregates to trap hydrophobic fluorescent dyes in water and its controlled release on exposure to UV light has also been explored. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

4.
A nondestructive method was developed for grafting and retrieving polymer brushes from single‐walled carbon nanotubes (SWCNT)s based on mussel‐inspired chemistry. Thermo‐responsive polymer brushes were grafted on SWCNTs by coating the tubes with polydopamine as a reactive underlayer and sequential surface‐initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate (OEGMA, Mn = 475) and 2‐(2'‐methoxyethoxy)ethyl methacrylate (MEO2MA). Copolymer brushes were retrieved from the SWCNTs using 1 M NaOH to destroy the crosslinked polydopamine coating, and after that, the pristine properties of the SWCNTs were preserved. The low critical solution temperature (LCST) and molecular weight of the copolymer were measured using a nephelometer and gel permeation chromatograph, respectively. The loading and release behavior of Rhodamine 6G on responsive polymer‐grafted SWCNTs demonstrates that the copolymer brushes confer the SWCNTs an LCST dependence. This method can accurately confirm the molecular weights and polydispersity of stimuli‐responsive polymers grafted on any other nanoparticles and predict their controlled release behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1807–1814  相似文献   

5.
We developed a simple route to prepare stabilized micelles and nanovesicles in aqueous solutions. A hydrophobic poly(succinimide) (PSI) was conjugated with the hydrophilic poly(ethylene glycol) (PEG) as a new type of cross‐linkable unit. Spherical aggregates were formed when dissolving the amphiphilic PEG682b‐PSI130 copolymer in aqueous solutions directly, and polymer nanovesicles were prepared by a precipitation‐dialysis method using PEG455b‐PSI130 copolymer. Bifunctional primary amine was added to the micelle or nanovesicle solutions to prepare cross‐linked structures via aminolysis reaction of the succinimide units. The degree of cross‐linking was controlled by adjusting the molar ratio of the cross‐linker to the succinimide units. Increasing the degree of cross‐linking leads to the compaction of the micelle core thus reduced diameter. The cross‐linked polymer micelles or nanovesicles maintained their morphology in extremely diluted solutions because of their structural stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
A new monomer derivative of N‐vinyl‐2‐caprolactam (VCL), namely 3‐(tert‐butoxycarbonylmethyl)‐N‐vinyl‐2‐caprolactam (TBMVCL), was synthesized via nucleophilic substitution at the α‐carbon to the lactam carbonyl group. The monomer was copolymerized radically with VCL and the copolymer compositions were controlled through varying the molar feeding percentages of TBMVCL. The resulting copolymers exhibited temperature‐responsive properties in water, with cloud points decreasing from 33 °C to 13 °C when the TBMVCL composition increased from 2.2 mol % to 18.6 mol %. Removal of the tert‐butyl protecting groups via acid hydrolysis exposed the carboxyl groups, which conferred pH sensitivity to the thermoresponsive properties of the resulting deprotected copolymers. The cloud point was found to increase with the increase of solution pH from 2.0 to 7.4, due to the ionization of the carboxyl groups. The influence of pH was most drastic for the 18.6 mol % copolymer composition. Furthermore, the phase transition temperature of the deprotected copolymers was found to be dependent on the polymer solution concentration, exemplifying classical Flory–Huggins miscibility behavior. Comparison of responsiveness was also made with another type of carboxyl functionalized poly(N‐vinyl‐2‐caprolactam) copolymer reported in our prior study, to examine the influence of the chemical structure of the carboxyl substitution group. Finally, the deprotected copolymer was demonstrated to be biocompatible using a fibroblast cell culture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 112–120  相似文献   

7.
A facile approach to synthesis of ABCDE‐type H‐shaped quintopolymer comprising polystyrene (PSt, C) main chain and poly(ethylene glycol) (PEG, A), poly(ε‐caprolactone) (PCL, B), poly(L ‐lactide) (PLLA, D), and poly(acrylic acid) (PAA, E) side chains was described, and physicochemical properties and potential applications as drug carriers of copolymers obtained were investigated. Azide‐alkyne cycloaddition reaction and hydrolysis were used to synthesize well‐defined H‐shaped quintopolymer. Cytotoxicity studies revealed H‐shaped copolymer aggregates were nontoxic and biocompatible, and drug loading and release properties were affected by macromolecular architecture, chemical composition, and pH value. The release rate of doxorubicin from copolymer aggregates at pH 7.4 was decreased in the order PAA‐b‐PLLA > H‐shaped copolymer > PEG‐PCL‐PSt star, and the release kinetics at lower pH was faster. The H‐shaped copolymer aggregates have a potential as controlled delivery vehicles due to their excellent storage stability, satisfactory drug loading capacity, and pH‐sensitive release rate of doxorubicin. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A novel double brush‐shaped copolymer with amphiphilic polyacrylate‐b‐poly(ethylene glycol)‐b‐poly acrylate copolymer (PA‐b‐PEG‐b‐PA) as a backbone and thermosensitive poly(N‐isopropylacrylamide) (PNIPAM) long side chains at both ends of the PEG was synthesized via an atom transfer radical polymerization (ATRP) route, and the structure was confirmed by FTIR, 1H NMR, and SEC. The thermosensitive self‐assembly behavior was examined via UV‐vis, TEM, DLS, and surface tension measurements, etc. The self‐assembled micelles, with low critical solution temperatures (LCST) of 34–38 °C, form irregular fusiform and/or spherical morphologies with single, double, and petaling cores in aqueous solution at room temperature, while above the LCST the micelles took on more regular and smooth spherical shapes with diameter ranges from 45 to 100 nm. The micelle exhibits high stabilities even in simulated physiological media, with low critical micellization concentration (CMC) up to 5.50, 4.89, and 5.05 mg L?1 in aqueous solution, pH 1.4 and 7.4 PBS solutions, respectively. The TEM and DLS determination reveled that the copolymer micelle had broad size distribution below its LCST while it produces narrow and homogeneous size above the LCST. The cytotoxicity was investigated by MTT assays to elucidate the application potential of the as‐prepared block polymer brushes as drug controlled release vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

10.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

12.
Solutions of a binaphthoxy phosphazene copolymer (containing chiral 2,2′‐dioxy‐1,1′‐binaphthyl units with 50% R and S configurations distributed along the chains) in N‐methyl pyrrolidone were studied by means of continuous flow experiments and small amplitude oscillatory flow tests. A sudden viscosity decrease was observed in the polymer concentration range (39–40 wt %), evidencing a liquid‐crystalline polymer behavior. This has been confirmed by other rheological methods which have demonstrated that, for a sufficiently high concentration, the solutions of the binaphthoxy phosphazene copolymer give rise to a lyotropic system with formation of rigid rods (axial ratio of 10) stacked parallel to each other. The lyotropic properties of our binaphthoxy phosphazene copolymer are compatible with a regular helical structure, similar to that found for a homoleptic binaphthoxy phosphazene, which contains only S configuration. This suggests that the chains of 50% R/S binaphthoxy phosphazene copolymer are, in average, close to the strictly alternating RS copolymeric structure of the syndiotactic isomer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

13.
We performed a critical reinvestigation of microwave enhancement of nitroxide‐mediated polymerization (NMP) of acrylamide (AM) in aqueous media in the dynamic (DYN) mode with a combination of a conventional hydrosoluble radical initiator and a β‐phosphonylated nitroxide (SG1). Based on the results of our previous work, a complementary series of polymerization reactions was carried out between 130 and 160 °C using only the DYN mode to ascertain the existence of a microwave effect. The polymer conversion (p), molar masses, polydispersity index, and viscosity of each sample were measured. The temperature was monitored inside and outside of the vessel using an optical fiber sensor and an IR sensor, respectively. Microwave enhancement of polymerization, temperature control and viscosity of the reaction media were closely related. We also furthered the field of hydrophilic AB diblock copolymer synthesis using a tertiary SG1‐based macroalkoxyamine and directly synthesized both poly(acrylamide‐b‐sodium 2‐acrylamido‐2‐methylpropanesulfonate), a neutral‐b‐anionic diblock copolymer, and poly(acrylamide‐b‐3‐dimethyl(methacrylamidopropyl)ammonium propanesulfonate), a neutral‐b‐zwitterionic diblock copolymer, in homogeneous aqueous media. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Solution property of hydrogenated polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene triblock copolymer (SEBS copolymer) was studied by using static light scattering and dynamic light scattering for cyclohexane and N‐methylpyrrolidone (NMP) solutions. From the values of dimensionless parameters ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, and solubility parameters, SEBS copolymer proved to exist as single chain close to random coil in nonpolar cyclohexane, whereas aggregate into the core‐shell micelle consisting of poly(ethylene/butylene) (PEB) core surrounded by PS shell in polar NMP. The core‐shell micelle formed in NMP is composed of 65 polymer chains, having three times larger average chain density (d = 0.12 g cm?3) than a single polymer chain (d = 0.04 g cm?3) in cyclohexane. The comparison with the aggregation behaviors in other solvents demonstrated that the aggregate compactness of the copolymer depended largely on solvent polarity, resulting in formation of the highly dense PEB core (Rc = 4.5 nm) and the thick PS shell (ΔR = 22.9 nm) in high‐polar NMP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 588–594, 2010  相似文献   

15.
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010  相似文献   

16.
The synthesis of a water‐soluble copolymer containing quinoline groups, P(DMAM‐co‐SDPQ), through free radical copolymerization of N,N‐dimethylacrylamide, DMAM, with 2,4‐diphenyl‐6‐(4‐vinylphenyl)quinoline, SDPQ, is presented and the optical properties of the final product are investigated in aqueous solution as a function of pH. It is found that the emission peak of SDPQ is red‐shifted from 411 to 484 nm with decreasing pH, due to the protonation of quinoline groups at low pH, suggesting that this copolymer may function as a luminescent pH‐indicator. Moreover, the copolymer exhibits the characteristics of a luminescent pH‐detector within the pH range 2 < pH < 4, as in this pH region the ratio of the emission intensity at 411 nm over that at 484 nm changes linearly in a logarithmic scale with the pH of the solution. Finally, the formation of less polar quinoline clusters in the aqueous P(DMAM‐co‐SDPQ) solution upon increasing pH was detected through Nile red probing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2078–2083, 2010  相似文献   

17.
We present herein a mild and rapid method to create diblock copolymer brushes on a silicon surface via photoinitiated “thiol‐ene” click reaction. The silicon surface was modified with 3‐mercaptopropyltrimethoxysilane (MPTMS) self‐assembled monolayer. Then, a mixture of divinyl‐terminated polydimethylsiloxane (PDMS) and photoinitiator was spin‐coated on the MPTMS surface and exposed to UV‐light. Thereafter, a mixture of thiol‐terminated polyethylene glycol (PEG) and photoinitiator were spin‐coated on the vinyl‐terminated PDMS‐treated surface, and the sequent photopolymerization was carried out under UV‐irradiation. The MPTMS, PDMS, and PEG layers were carefully identified by X‐ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements. The thickness of the polydimethylsiloxane‐block‐poly(ethylene glycol) (PDMS‐b‐PEG) diblock copolymer brush could be controlled by the irradiation time. The responsive behavior of diblock copolymer brushes treated in different solvents was also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N‐dimethylacrylamide‐co‐4‐(ethyl)‐morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSDn = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSDn = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSDn = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.  相似文献   

19.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

20.
Since glycylglycine (Gly‐Gly) residue in the N‐terminal region of human prion protein, a copper binding protein, binds with Cu(II), N‐terminus Gly‐Gly side‐chain containing water soluble block copolymer was synthesized and used for simultaneous sensing and removal of Cu(II) ion from aqueous medium. The polymer has amide nitrogen atom and ester carbonyl group as potential binding sites in the side‐chain Gly‐Gly pendants. Job's plot experiment confirms 2:1 binding stoichiometry of polymer with Cu(II). This polymer is able to sense parts per billion level of Cu(II) very selectively in an aqueous medium and remove Cu(II) ions quantitatively by precipitating out the Cu(II) via complex formation in the pH range 7–9. The binding mode of polymer with Cu(II) in polymer‐Cu(II) complex was characterized by 1H NMR, FTIR, and UV–vis spectroscopy. The attachment of Cu(II) in the polymer‐Cu(II) complex was confirmed by cyclic voltammetry experiment. Cu(II) release from the complex was achieved at pH 5 due to the protonation of amide nitrogen atoms in the Gly‐Gly moiety. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 914–921  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号