首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Direct‐injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e‐noses) in classification tasks are briefly reviewed, with an emphasis on food‐related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR‐MS), and many results obtained using the powerful PTR‐time of flight‐MS (PTR‐ToF‐MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR‐ToF‐MS. A supervised multivariate data analysis based on partial least squares regression‐discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR‐MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.  相似文献   

3.
We examine the potential for PTR‐TOF‐MS systems to quantitatively measure glyoxal in ambient air by characterizing the response of the instrument to a dilute glyoxal sample, calibrating the system as a function of humidity. The concentration of glyoxal in a sample air‐stream was measured with an UV absorption spectrometer in parallel to a PTR‐TOF‐MS. This calibration demonstrated that the PTR‐TOF‐MS has a relatively low sensitivity to glyoxal particularly at high humidity. Extensive fragmentation of glyoxal to formaldehyde was observed. This behaviour not only desensitizes PTR‐MS system to glyoxal; it may also pose a problem to the quantification of formaldehyde. © 2016 The Authors. Journal of Mass Spectrometry Published by John Wiley & Sons Ltd.  相似文献   

4.
The study of ion chemistry involving the NO2+ is currently the focus of considerable fundamental interest and is relevant in diverse fields ranging from mechanistic organic chemistry to atmospheric chemistry. A very intense source of NO2+ was generated by injecting the products from the dielectric barrier discharge of a nitrogen and oxygen mixture upstream into the drift tube of a proton transfer reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) apparatus with H3O+ as the reagent ion. The NO2+ intensity is controllable and related to the dielectric barrier discharge operation conditions and ratio of oxygen to nitrogen. The purity of NO2+ can reach more than 99% after optimization. Using NO2+ as the chemical reagent ion, the gas‐phase reactions of NO2+ with 11 aromatic compounds were studied by PTR‐TOF‐MS. The reaction rate coefficients for these reactions were measured, and the product ions and their formation mechanisms were analyzed. All the samples reacted with NO2+ rapidly with reaction rate coefficients being close to the corresponding capture ones. In addition to electron transfer producing [M]+, oxygen ion transfer forming [MO]+, and 3‐body association forming [M·NO2]+, a new product ion [M−C]+ was also formed owing to the loss of C═O from [MO]+.This work not only developed a new chemical reagent ion NO2+ based on PTR‐MS but also provided significant interesting fundamental data on reactions involving aromatic compounds, which will probably broaden the applications of PTR‐MS to measure these compounds in the atmosphere in real time.  相似文献   

5.
Donkey's milk (DM), representing a safe and alternative food in both IgE‐mediated and non‐IgE‐mediated cow's milk protein allergy, can be categorized as precious pharma‐food. Moreover, an economically relevant interest for the use of DM in cosmetology is also developing. The detection of adulterations and contaminations of DM is a matter of fundamental importance from both an economic and allergenic standpoint, and, to this aim, fast and efficient analytical approaches to assess the authenticity of this precious nutrient are desirable. Here, a rapid matrix‐assisted laser desorption/ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF MS)‐based method aimed to the detection of bovine or caprine milk in raw DM is reported. The presence of the extraneous milks was revealed by monitoring the protein profiles of the most abundant whey proteins, α‐lactalbumin (α‐LA) and β‐lactoglobulin, used as molecular markers. The possibility of obtaining a quantitative analysis of the level of cow or goat milk in DM based on the MALDI‐TOF peak areas of α‐LAs was also explored. The results showed that the experimental quantitative values were in good agreement with the real composition of each mixture. As pretreatment of the milk samples is not required, and owing to the speed and the high sensitivity of MALDI‐MS, the protocol here reported could represent a reliable method for routine analyses aimed to assess the absence of contamination in raw fresh DM samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
For the on‐line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI‐MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release. Aroma release from flavoured aqueous solutions (in vitro measurements in Teflon bags and glass vials) or flavoured candies (in vivo measurements on six panellists) was studied using APCI‐ and PTR‐MS. Very similar results were obtained with both techniques. Their sensitivities, expressed as limit of detection of 2,5‐dimethylpyrazine, were found equivalent at 12 ng/l air. Analyses of Teflon bag headspace revealed a poor repeatability and important ionization competitions with both APCI‐ and PTR‐MS, particularly between an ester and a secondary alcohol. These phenomena were attributed to dependency on moisture content, gas/liquid volume ratio, proton affinities and product ion distribution, together with inherent drawbacks of Teflon bags (adsorption, condensation of water and polar molecules). Concerning the analyses of vial headspace and in vivo analyses, similar results were obtained with both techniques, revealing no competition phenomena. This study highlighted the equivalent performances of APCI‐MS and PTR‐MS for in vitro and in vivo flavour release investigations and provided useful data on the problematic use of sample bags for headspace analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
《Electrophoresis》2017,38(16):2034-2041
High‐throughput mass spectrometry‐based proteomic analysis requires peptide fractionation to simplify complex biological samples and increase proteome coverage. OFFGEL fractionation technology became a common method to separate peptides or proteins using isoelectric focusing in an immobilized pH gradient. However, the OFFGEL focusing process may be further optimized and controlled in terms of separation time and pI resolution. Here we evaluated OFFGEL technology to separate peptides from different samples in the presence of low‐molecular‐weight (LMW) color pI markers to visualize the focusing process. LMW color pI markers covering a large pH range were added to the peptide mixture before OFFGEL fractionation using a 24‐wells device encompassing the pH range 3–10. We also explored the impact of LMW color pI markers on peptide fractionation labeled previously for iTRAQ. Then, fractionated peptides were separated by RP_HPLC prior to MS analysis using MALDI‐TOF/TOF mass spectrometry in MS and MS/MS modes. Here we report the performance of the peptide focusing process in the presence of LMW color pI markers as on‐line trackers during the OFFGEL process and the possibility to use them as pI controls for peptide focusing. This method improves the workflow for peptide fractionation in a bottom‐up proteomic approach with or without iTRAQ labeling.  相似文献   

8.
The high accuracy, molecular resolution and sensitivity of matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) make it an efficient method for analysing all kinds of biomolecules including nucleic acids, proteins/peptides, carbohydrates and lipids. MALDI‐TOF‐MS based high‐throughput genotyping of genetic heterogeneities possesses the potential of becoming a routine method. MAL‐DI‐TOF‐MS can be used for the identification of proteins and posttranslational modifications. Taken together, MALDI‐TOF‐MS represents a integrated platform technology in bioanalytics and molecular medicine.  相似文献   

9.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) coupled with CID (collision‐induced dissociation) has been used for the detailed characterization of two poly(2‐ethyl‐2‐oxazoline)s as part of a continuing study of synthetic polymers by MALDI‐TOF MS/MS. These experiments provided information about the variety of fragmentation pathways for poly(oxazoline)s. It was possible to show that, in addition to the eliminations of small molecules, like ethene and hydrogen, the McLafferty rearrangement is also a possible fragmentation route. A library of fragmentation pathways for synthetic polymers was also constructed and such a library should enable the fast and automated data analysis of polymers in the future. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Hadamard transform time‐of‐flight mass spectrometry (HT‐TOF MS) is a type of mass analysis that was developed to couple continuous ion sources to the inherently pulsed nature of time‐of‐flight measurements. Unlike conventional TOF MS, the Hadamard transform method offers a duty cycle of 50 %, with the possibility of extending it to 100 %. Because it is a multiplexing technique, the attainable signal‐to‐noise ratio (SNR) is also significantly higher than that of conventional TOF MS. This review covers the basic principles behind HT‐TOF MS. We illustrate, through examples, the source of the high‐duty cycle and the increase in SNR. These features translate to a mass spectral storage rate that is the fastest among similar instruments, which enables its use as a detector for high‐speed separations.  相似文献   

12.
Yogurt and related products have been directly analyzed using laser desorption spray post‐ionization mass spectrometry (LDSPI‐MS) in positive ion mode. Assignments are made for some of the abundant diagnostic peaks through LDSPI‐MS/MS analysis in comparison with authentic compounds. It is demonstrated that different yogurt products can be reliably differentiated according to their LDSPI‐MS spectra. Principal component analysis (PCA) is further used to clearly show the capability of LDSPI‐MS fingerprinting for rapid sorting of yogurt products. We believe that this sample‐preparation‐free technique can be a very useful product screening tool in the dairy industry because of its simplicity, reliability and high throughput. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on development of time‐of‐flight (TOF) mass spectrometry in response to the invention of matrix‐assisted laser desorption/ionization (MALDI). Before this breakthrough ionization technique for nonvolatile molecules, TOF was generally considered as a useful tool for exotic studies of ion properties but was not widely applied to analytical problems. Improved TOF instruments and software that allow the full potential power of MALDI to be applied to difficult biological applications are described. A theoretical approach to the design and optimization of MALDI‐TOF instruments for particular applications is presented. Experimental data are provided that are in excellent agreement with theoretical predictions of resolving power and mass accuracy. Data on sensitivity and dynamic range using kilohertz laser rates are also summarized. These results indicate that combinations of high‐performance MALDI‐TOF and TOF‐TOF with off‐line high‐capacity separations may ultimately provide throughput and dynamic range several orders of magnitude greater than those currently available with electrospray LC‐MS and MS‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
DART (Direct Analysis in Real Time) coupled with Time‐of‐Flight Mass Spectrometry (TOF/MS) has been used for analyses of ice‐teas. The article focuses on quality and authenticity of ice‐teas as one of the most important tea‐based products on the market. Twenty‐one samples of ice‐teas (black and green) were analysed. Selected compounds of ice‐teas were determined: theobromine, caffeine, total phenolic compounds, total soluble solids, total amino acid concentration, preservatives and saccharides were determined. Fingerprints of DART‐TOF/MS spectra were used for comprehensive assessment of the ice‐tea samples. The DART‐TOF/MS method was used for monitoring the following compounds: citric acid, caffeine, saccharides, artificial sweeteners (saccharin, acesulphame K), and preservatives (sorbic and benzoic acid), phosphoric acid and phenolic compounds. The measured data were subjected to a principal components analysis. The HPLC and DART‐TOF/MS methods were compared in terms of determination of selected compounds (caffeine, benzoic acid, sorbic acid and saccharides) in the ice‐teas. The DART‐TOF/MS technique seems to be a suitable method for fast screening, testing quality and authenticity of tea‐based products. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

16.
A rapid‐resolution liquid chromatography (RRLC) method coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (Q‐TOF MS/MS) has been developed for analysis of oleanane‐type triterpenoid saponins in Achyranthes bidentata. Collision‐induced dissociation techniques were used to fragment the precursor molecular ions and the resulting product ions. A retro‐Diels‐Alder rearrangement from the oleanane aglycone skeleton in the MS/MS process yielded characteristic fragment ions in positive ion mode. These characteristic ions were helpful in predicting the aglycone structure. Losses of monosaccharide sequences, presence of sugar‐chain fragment ions, and cleavage of CO2 were observed for important information on sugar types and attachment sequences. Fragmentation rules of three major groups of saponins from A. bidentata were summarized, and the possible fragmentation pathways were proposed. A total of 22 compounds including both the target and unknown oleanane‐type triterpenoid saponins were rapidly screened and predicted in the herbal extract by the developed method. The RRLC‐Q‐TOF MS/MS method has provided a powerful approach for rapid separation, target screening and structural elucidation of oleanane‐type saponins, and also opened perspectives for similar studies on other herbal medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
High‐resolution matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry (TOF MS) was used for the analysis of the low‐molecular‐weight products from the photo‐oxidation of poly(3‐hexylthiophene) (P3HT) in solution and thin film. Eight new peak series were observed in the low‐mass range of the mass spectra of the products degraded in solution, and the formulas of the eight components were determined from the accurate mass. From SEC/MALDI‐TOF MS, two components were identified as the degraded products, and the other six components were derived from the fragmentation of the degraded products during the MALDI process. A mechanism for the formation of these components was proposed on the basis of the results of MALDI‐TOF MS. For the thin film degradation, a part of products in the solution degradation were observed, which supports that the oxidation of P3HT in solution and thin film proceeded in the same mechanism. This study shows that high‐resolution MALDI‐TOF MS is effective for the analysis of the low‐molecular‐weight products from P3HT photo‐oxidation and expected to be feasible for the degradation analyses of other polymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
20.
Helicid is an active natural aromatic phenolic glycoside ingredient originating from a well‐known traditional Chinese herbal medicine and has the significant effects of sedative hypnosis, anti‐inflammatory analgesia and antidepressant. In this study, we analyzed the potential metabolites of Helicid in rats by multiple mass defect filter and dynamic background subtraction in ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF‐MS). Moreover, we used a novel data processing method, ‘key product ions’, to rapidly detect and identify metabolites as an assistant tool. MetabolitePilot™ 2.0 software and PeakView™ 2.2 software were used for analyzing metabolites. Twenty metabolites of Helicid (including 15 phase I metabolites and five phase II metabolites) were detected by comparison with the blank samples. The biotransformation route of Helicid was identified as demethylation, oxidation, dehydroxylation, hydrogenation, decarbonylation, glucuronide conjugation and methylation. This is the first study simultaneously detecting and identifying Helicid metabolism in rats employing UHPLC‐Q‐TOF‐MS technology. This experiment not only proposed a method for rapidly detecting and identifying metabolites, but also provided useful information for further study of the pharmacology and mechanism of Helicid in vivo. Furthermore, it provided an effective method for the analysis of other aromatic phenolic glycosides metabolic components in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号