首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of fluorine‐containing amphiphilic diblock copolymers comprising hydrophobic poly(p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate) (PTPFCBPMA) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments were synthesized via successive reversible addition fragmentation chain transfer (RAFT) polymerizations. RAFT homopolymerization of p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)phenyl methacrylate was first initiated by 2,2′‐azobisisobutyronitrile using cumyl dithiobenzoate as chain transfer agent, and the results show that the procedure was conducted in a controlled way as confirmed by the fact that the number‐average molecular weights increased linearly with the conversions of the monomer while the polydispersity indices kept below 1.30. Dithiobenzoate‐capped PTPFCHPMA homopolymer was then used as macro‐RAFT agent to mediate RAFT polymerization of 2‐(diethylamino)ethyl methacrylate, which afforded PTPFCBPMA‐b‐PDEAEMA amphiphilic diblock copolymers with different block lengths and narrow molecular weight distributions (Mw/Mn ≤ 1.28). The critical micelle concentrations of the obtained amphiphilic diblock copolymers were determined by fluorescence spectroscopy technique using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of the formed micelles were investigated by transmission electron microscopy and dynamic light scattering, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Thermoresponsive double hydrophilic diblock copolymers poly(2‐(2′‐methoxyethoxy)ethyl methacrylate‐co‐oligo(ethylene glycol) methacrylate)‐b‐poly(6‐O‐methacryloyl‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAGP) with various compositions and molecular weights were obtained by deprotection of amphiphilic diblock copolymers P(MEO2MA‐co‐OEGMA)‐b‐poly(6‐O‐methacryloyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose) (P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP), which were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization using P(MEO2MA‐co‐OEGMA) as macro‐RAFT agent. Dynamic light scattering and UV–vis studies showed that the micelles self‐assembled from P(MEO2MA‐co‐OEGMA)‐b‐PMAlpGP were thermoresponsive. A hydrophobic dye Nile Red could be encapsulated by block copolymers P(MEO2MA‐co‐OEGMA)‐b‐PMAGP upon micellization and released upon dissociation of the formed micelles under different temperatures. The galactose functional groups in the PMAGP block have specific interaction with HepG2 cells, and P(MEO2MA‐co‐OEGMA)‐b‐PMAGP has potential applications in hepatoma‐targeting drug delivery and biodetection. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613  相似文献   

4.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
In this work the synthesis of poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PBA‐b‐PHEMAGl) diblock glycopolymer and poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate)‐b‐poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PHEMAGl‐b‐PBA‐b‐PHEMAGl) was performed via atom transfer radical polymerization. Monofunctional and difunctional poly(butyl acrylate) macroinitiators were used to synthesize the well‐defined diblock and triblock glycopolymers by chain extension reaction with the glycomonomer HEMAGl. The self‐assembly of these glycopolymers in aqueous solution was studied by dynamic light scattering and transmission electron microcopy, showing the coexistence of spherical micelles and polymeric vesicles. In addition, the biomolecular recognition capacity of these micelles and vesicles, containing glucose moieties in their coronas, was investigated using the lectin Concanavalin A, Canavalia Ensiformis, which specifically interacts with glucose groups. The binding capacity of Concanavalin A with glycopolymer is influenced by the copolymer composition, increasing with the length of HEMAGl glycopolymer segment in the block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A series of well‐defined amphiphilic diblock copolymers consisting of hydrophobic polyisobutylene (PIB) and hydrophilic poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) segments was synthesized via the combination of living carbocationic polymerization and reversible addition fragmentation chain transfer (RAFT) polymerization. Living carbocationic polymerization of isobutylene followed by end‐capping with 1,3‐butadiene was first performed at ?70 °C to give a well‐defined allyl‐Cl‐terminated PIB with a low polydispersity (Mw/Mn =1.29). This end‐functionalized PIB was further converted to a macromolecular chain transfer agent for mediating RAFT block copolymerization of 2‐(diethylamino)ethyl methacrylate at 60 °C in tetrahydrofuran to afford the target well‐defined PIB‐b‐PDEAEMA diblock copolymers with narrow molecular weight distributions (Mw/Mn ≤1.22). The self‐assembly behavior of these amphiphilic diblock copolymers in aqueous media was investigated by fluorescence spectroscopy and transmission electron microscope, and furthermore, their pH‐responsive behavior was studied by UV‐vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1478–1486  相似文献   

7.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

8.
Poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) homopolymers with low polydispersities were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization. The performances of two chain transfer agents, 2‐cyanoprop‐2‐yl dithiobenzoate and 4‐cyanopentanic acid dithiobenzoate (CPADB), were compared. It was found that the polymerization of 2‐(diethylamino) ethyl methylacrylate was under good control in the presence of CPADB with 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as initiator in 1,4‐dioxane at 70 °C. The kinetic behaviors were investigated under different CPADB/ACPA molar ratios. A long polymerization inhibition period was observed at high [CPADB]/[ACPA] ratio. The influences of [CPADB]/[ACPA] ratio, monomer/[CPADB] ratio, and temperature were studied with respect to monomer conversion, molecular weight control, and polydispersity index (PDI). The PDI decreased from 1.21 to 1.12, as the CPADB/ACPA molar ratio changed from 2 to 10. The molecular weight of PDEAEMA could be controlled by monomer/CPADB molar ratio. The control over MW and PDI was improved as the temperature increased from 60 to 70 °C; however, an additional increase to 80 °C led to a loss of control. Using PDEAEMA macroRAFT agent, pH/thermo double‐responsive block copolymers of PDEAEMA and poly(N‐isopropylacrylamide) (PDEAEMA‐b‐PNIPAM) with narrow polydispersity (PDI, 1.24) were synthesized. The lower critical solution temperature of PDEAEMA‐b‐PNIPAM block copolymer depended on the environmental pH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3294–3305, 2008  相似文献   

9.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

10.
Controlled free radical polymerization of sugar-carrying methacrylate, 3-O-methacryloyl-1,2 : 5,6-di-O-isopropylidene-d-glucofuranose (MAIpGlc) was achieved by the atom transfer radical polymerization (ATRP) technique with an alkyl halide/copper-complex system in veratrole at 80°C. The time–conversion first-order plot was linear and the number-average molecular weight increased in direct proportion to the ratio of the monomer conversion to the initial initiator concentration, providing PMAIpGlc with a low polydispersity. The sequential addition of the two monomers styrene (S) and MAIpGlc afforded a block copolymer of the type PS-b-PMAIpGlc. The acidolysis of the homo- and block copolymers gave well-defined glucose-carrying water-soluble polymers PMAGlc and PS-b-PMAGlc, respectively. The amphiphilic PS-b-PMAGlc block copolymer exhibited a microdomain surface morphology with spherical PS domains in a PMAGlc matrix. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2473–2481, 1998  相似文献   

11.
RAFT copolymerization of beta‐pinene and maleic anhydride was successfully achieved for the first time, using 1‐phenylethyl dithiobenzoate as chain transfer agent in a mixed solvent of tetrehydrofuran and 1.4‐dioxane (1:9, v/v) at a feed molar ratio of beta‐pinene to maleic anhydride as 3:7, and the alternating copolymer was prepared with predetermined molecular weight and narrow molecular weight distribution. Furthermore, using former alternating copolymer as a macro‐RAFT agent, block copolymer poly(beta‐pinene‐alt‐maleic anhydride)‐b‐polystyrene was synthesized in a chain extending with styrene. Hydrolysis of this block copolymer under acidic conditions formed a new amphiphilic block copolymers poly(beta‐pinene‐alt‐maleic acid)‐b‐polystyrene whose self‐assembly behaviors in aqueous solution at different pH were investigated through SEM and DLS. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1422–1429  相似文献   

12.
Optically active polymers bearing chiral units at the side chain were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in the presence of 2,2′‐azobisisobutyronitrile (AIBN)/benzyl dithiobenzoate (BDB), using a synthesized 6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose (VBPG) as the monomer. The experimental results suggested that the polymerization of the monomer proceeded in a living fashion, providing chiral group polymers with narrow molecular weight distributions. The optically active nature of the obtained poly (6‐Op‐vinylbenzyl‐1,2:3,4‐Di‐O‐isopropylidene‐D ‐galactopyranose) (PVBPG) was studied by investigating the dependence of specific rotation on the molecular weight of PVBPG and the concentration of PVBPG in tetrahydrofuran (THF). The results showed the specific rotation of PVBPG increased greatly with the decrease of the concentration of the PVBPG homopolymer. In addition, the effect of block copolymers of PVBPG on the optically active nature was also investigated by preparing a series of diblock copolymers of poly(methyl methacrylate) (PMMA)‐b‐PVBPG, polystyrene (PS)‐b‐PVBPG, and poly(methyl acrylate) (PMA)‐b‐PVBPG. It was found that both the homopolymer and the diblock copolymers possessed specific rotations. Finally, the ability of chiral recognition of the PVBPG homopolymer was investigated via an enantiomer‐selective adsorption experiment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3788–3797, 2007  相似文献   

13.
Through reversible addition‐fragmentation chain transfer (RAFT) polymerization of t‐butyl acrylate (tBA) and RAFT copolymerization of 2‐dimethylaminoethyl methacrylate (DMAEMA) with poly(ethylene glycol) methyl ether methacrylate (PEGMEMA), block‐comb copolymer of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) was prepared. After the self‐assembly of PtBA‐b‐P(PEGMEMA‐co‐DMAEMA) into core‐shell spherical micelles, P(PEGMEMA‐co‐DMAEMA) segments of the shell was crosslinked with 1,2‐bis(2‐iodoethoxy)ethane and the core of PtBA was selectively hydrolysized with trifluoroacetic acid. Thus, zwitterionic shell‐crosslinked micelles with positively charged outer shell and negatively charged inner core were obtained. Dynamic light scattering, transmission electron microscope, Zeta potential measurement, and nuclear magnetic resonance were used to confirm the formation of the zwitterionic shell‐crosslinked micelles. They showed the excellent resistance to the variation of pH value and possessed the positive values throughout the whole range of pH range even if the carboxylic groups of the micelles was much more than ammonium groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Disulfide‐centered star‐shaped poly(ε‐benzyloxycarbonyl‐l ‐lysine)‐b‐poly(ethylene oxide) block copolymers (i.e., A2B4 type Cy‐PZlys‐b‐PEO) were synthesized by the combination of ring‐opening polymerization and thiol‐yne chemistry. Their molecular structures and physical properties were characterized in detail by FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized optical microscope. Despite mainly exhibiting an α‐helix conformation, the inner PZlys blocks within copolymers greatly prohibited the crystallinity of the outer PEO blocks and presented a liquid crystal phase transition behavior in solid state. These block copolymers Cy‐PZlys‐b‐PEO self‐assembled into nearly spherical micelles in aqueous solution, which had a hydrophobic disulfide‐centered PZlys core surrounded by a hydrophilic PEO corona. As monitored by means of DLS and TEM, these micelles were progressively reduced to smaller micelles in 10 mM 1,4‐dithiothreitol at 37 °C and finally became ones with a half size, demonstrating a reduction‐sensitivity. Despite a good drug‐loading property, the DOX‐loaded micelles of Cy‐PZlys‐b‐PEO exhibited a reduction‐triggered drug release profile with an improved burst‐release behavior compared with the linear counterpart. Importantly, this work provides a versatile strategy for the synthesis of the disulfide‐centered star‐shaped polypeptide block copolymers potential for intracellular glutathione‐triggered drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2000–2010  相似文献   

15.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

18.
The dispersion reversible addition‐fragmentation chain transfer (RAFT) polymerization of 4‐vinylpyridine in toluene in the presence of the polystyrene dithiobenzoate (PS‐CTA) macro‐RAFT agent with different chain length is discussed. The RAFT polymerization undergoes an initial slow homogeneous polymerization and a subsequent fast heterogeneous one. The RAFT polymerization rate is dependent on the PS‐CTA chain length, and short PS‐CTA generally leads to fast RAFT polymerization. The dispersion RAFT polymerization induces the self‐assembly of the in situ synthesized polystyrene‐b‐poly(4‐vinylpyridine) block copolymer into highly concentrated block copolymer nano‐objects. The PS‐CTA chain length exerts great influence on the particle nucleation and the size and morphology of the block copolymer nano‐objects. It is found, short PS‐CTA leads to fast particle nucleation and tends to produce large‐sized vesicles or large‐compound micelles, and long PS‐CTA leads to formation of small‐sized nanospheres. Comparison between the polymerization‐induced self‐assembly and self‐assembly of block copolymer in the block‐selective solvent is made, and the great difference between the two methods is demonstrated. The present study is anticipated to be useful to reveal the chain extension and the particle growth of block copolymer during the RAFT polymerization under dispersion condition. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
In this work, the synthesis and characterization of novel amphiphilic diblock copolymers of poly(2‐dimethylamino ethyl methacrylate)‐b‐poly(lauryl methacrylate), PDMAEMA‐b‐PLMA, using the reversible addition‐fragmentation chain transfer (RAFT) polymerization technique, are reported. The diblocks were successfully derivatized to cationic and zwitterionic block polyelectrolytes by quaternization and sulfobetainization of the PDMAEMA block, respectively. Furthermore, their molecular and physicochemical characterization was performed by using characterization techniques such as NMR and FTIR, size exclusion chromatography, light scattering techniques, and transmission electron microscopy. The structure of the diblock micelles, their behavior, and properties in aqueous solution were investigated under the effect of pH, temperature, and ionic strength, as PDMAEMA and its derivatives are stimuli‐responsive polymers and exhibit responses to variations of at least one of these physicochemical parameters. These new families of stimuli‐responsive block copolymers respond to changes of their environment giving interesting nanostructures, behavioral motifs, and properties, rendering them useful as nanocarriers for drug delivery and gene therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 598–610  相似文献   

20.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of N‐vinylcarbazole (NVK) mediated by macromolecular xanthates was used to prepare three types of block copolymers containing poly(N‐vinylcarbazole) (PVK). Using a poly(ethylene glycol) monomethyl ether based xanthate ( PEG‐X ), the RAFT polymerization of NVK proceeded in a controlled way to afford a series of PEG‐b‐PVK with different PVK chain lengths. Successive RAFT polymerization of NVK and vinyl acetate (VAc) with a small molecule xanthate ( X1 ) as the chain transfer agent was tested to prepare PVK‐b‐PVAc. Though both monomers can be homopolymerized in a controlled manner with this xanthate, only by polymerizing NVK first could give well‐defined block copolymers. The xanthate groups in the end of PVK could be removed by radical‐induced reduction using tributylstannane, and PVK‐b‐PVA was obtained by further hydrolysis of PVK‐b‐PVAc under basic conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号