首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An electrochemical approach is introduced for synthesis of carbon dots (CDs) by exfoliating graphite rods at a voltage of 15 V in an electrolyte consisting of a mixture of water and two ionic liquids. It is found that the size of the CDs can be tuned by varying the fraction of water in the mixed electrolyte; CDs in sizes of 4.9, 4.1 and 3.1 nm are obtained if the electrolyte contains water in fractions of 24, 38 and 56 %, respectively. The CDs have a quantum yield of almost 10 % and display the typical excitation wavelength-dependent maxima of photoluminescence, strongest at excitation/emission wavelengths of 360/440 nm. Fourier transform infrared and X-ray photoelectron spectroscopy show the CDs to have oxygen functional groups on their surface which strongly improve solubility. The CDs were applied to image cells of the electricity-producing bacteria Shewanellaoneidensis MR-1.
Graphical Abstract An electrochemical approach is introduced to synthesize carbon dots by exfoliating graphite rods in mixed electrolyte of water and ionic liquids. The increasing size of carbon dots was realized by reducing the volume of water in the mixed electrolyte. The carbon dots were used to fluorescently image the electricity-producing bacterium Shewanellaoneidensis MR-1.
  相似文献   

2.
This article reports on the synthesis of water dispersible carbon quantum dots (CDs) by a one-step hydrothermal method using polyamidoamine (PAMAM) and (3-aminopropyl)triethoxysilane (APTES) as a platform and passivant. The resulting CDs are highly uniform and finely dispersed. The synergistic effect between PAMAM and APTES on the surface of the CDs results in a fluorescence that is much brighter than that of CDs modified with either APTES or PAMAM only. The fluorescence of the co-modified CDs is quenched by Hg(II) ions at fairly low concentrations. Under the optimum conditions, the intensity of quenched fluorescence drops with Hg(II) concentration in the range from 0.2 nM to 10 μM, and the detection limit is 87 fM. The effect of potentially interfering cations on the fluorescence revealed a high selectivity for Hg2+. The fluorescent probe was applied to the determination of Hg(II) in (spiked) waters and milk and gave recoveries between 95.6 and 107 %, with relative standard deviation between 4.4 and 6.0 %.
Graphical abstract Strongly fluorescent carbon quantum dots (CDs) modified with polyamidoamine (PAMAM) and 3-aminopropyltriethoxysilane (APTES) were synthesized by one-step hydrothermal strategy. The resulting co-modified CD s were used as fluorescent probe for sensitive and selective detection of Hg2+.
  相似文献   

3.
We describe a highly sensitive glucose probe based on carbon dots modified with MnO2. A strong reduction of the green fluorescence of the carbon dots (CDs) happened due to the surface energy transfer (SET) from CDs to the deposited MnO2. In the presence of H2O2 (formed via enzymatic oxidation of glucose), fluorescence is restored because the MnO2 nanosheets are reduced to form colorless Mn(II) ions. These findings were used to design a fluorometric glucose assay that has a detection limit as low as 44 nM (at an S/N ratio of 3).
Graphical Abstract A strong reduction of the green fluorescence of the carbon dots (CDs) occurs due to surface energy transfer (SET) from CDs to the deposited MnO2. In the presence of H2O2 (formed by enzymatic action of glucose oxidase) the MnO2 nanosheets are reduced to form colorless Mn(II) ions, and glucose can be quantified by the fluorescence restored.
  相似文献   

4.
Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specific optical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CD binds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zhe MTA concentration. The fluorometric limit of detection is 1 nM with a dynamic range from 5 to 156 nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6 Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS).
Graphical abstract Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence of C-Ds is quenched. On addition of MTA, fluorescence is restored.
  相似文献   

5.
A method is described for the determination of the polarity of mixed organic solvents by using the fluorescent probe Hostasol Red (HR) desposited on the outer surface of nanosized zeolite L. Organic solvents and their mixtures can be roughly classified according to their polarity with bare eyes and fluorometrically. Emission peaks range from 520 to 640 nm. Some solvents act as quenchers. The method is studied with series of protic and nonprotic solvents, and with selected mixtures of organic solvents.
Graphical abstract The dye Hostalene Red adsorbed on nanosized zeolite shows strong fluorescence solvatochromism. This can be exploited to quickly assess the polarity of solvents and solvent mixtures.
  相似文献   

6.
A method is described for the synthesis of a nanocomposite containing FeOOH and N-doped carbon nanosheets. The nanocomposite was synthesized by a hydrothermal method using a Fe3O4/chitosan nanocomposite as the precursor. The nanocomposite displays peroxidase-like activity and catalyzes the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2. This results in the formation of a blue colored product with an absorption maximum at 652 nm in the UV-vis spectra. Based on these findings, colorimetric assays were worked out for both hydrogen peroxide and glucose. The H2O2 assay works in the 5 to 19 μM concentration range, and the limit of detection is 5 nM. The glucose assay works in the 8 μM to 0.8 mM concentration range and has a 0.2 μM detection limit. The method was successfully applied to the determination of glucose in human urine.
Graphical abstract Schematic of the hydrothermal synthesis of a FeOOH/N-doped carbon nanocomposite. It was used to replace peroxidase enzyme for the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in a visual colorimetric test for glucose in human urine.
  相似文献   

7.
Carbon dots (CDs) possess superior fluorescent properties in that they do not blink, are biocompatible, chemically inert, have small size and well tunable photoluminescence (PL), can be easily functionalized with biomolecules, and can be multi-photon excited to give up-converted PL. This review (with 141 refs.) summarizes recent progress in the field of imaging using carbon dots doped with heteroatoms (X-CDs). Following an introduction, we discuss top-down and bottom-up strategies for synthesis and methods for surface modification. We also compare the differences in synthesis for undoped CDs and X-CDs. Specifically, CDs doped with heteroelemets nitrogen, phosphorus, sulfur, selenium, boron and silicium are treated. We then discuss method for determination of the properties (particle size, ZP), how doping affects fluorescence (spectra, quantum yields, decay times), and how dopants affect upconversion (UC, anti-Stokes luminescence). We finally review the progress made in fluorescent imaging of cells tissue, and other biomatter. This review also gives new hints on how to use synthetic methods for tuning the structure of X-CDs, how doping affects properties, and how to achieve new bioimaging applications.
Graphical abstract Carbon dots doped with heteroatoms (X-CDs) are a kind of fluorescent nanomaterials that display bright fluorescence, high quantum yield, photostability, biocompatibility and low toxicity. Hence, they possess large potential for both in-vitro and in-vivo bioimaging.
  相似文献   

8.
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed.
Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
  相似文献   

9.
Carbon nanodots modified with triethylenetetramine (referred to as TCDs) are shown to be viable fluorescent probes for relay recognition of Cu(II) ion and glutathione (GSH). The assay is based on an “on-off-on” mechanism where the “on-off” effect, i.e. quenching by Cu(II) by up to 67%, is exploited to quantify it in concentrations as low as 3.4 nM. The unique quenching of fluorescence (measured at excitation/emission wavelengths of 380/470 nm; quantum yield 16%) is attributed to the fairly selective capture of Cu(II) by the amino and amide groups on the surface of the TCDs. On addition of GSH to the quenched TCD/Cu(II) complex, fluorescence is restored. This effect enables GSH to be quantified in the 0.2 to 175 μM concentration range, with a 0.11 μM detection limit. The turn-on response to GSH is highly selective over other natural amino acids and common anions. Furthermore, the TCDs were successfully applied to image Cu(II) and GSH in living yeast cells.
Graphical Abstract Carbon nanodots modified with triethylenetetramine show strong blue fluorescence which is quenched by Cu(II) but restored on addition of glutathione. Both Cu(II) (down to 3.4 nM) and glutathione (down to 110 nM) can be detected via these effects.
  相似文献   

10.
This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.
Graphical abstract ?
  相似文献   

11.
The authors report that the peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine. This finding has led to  a highly sensitive colorimetric assay for cysteine that is based on the nanohybrid-catalyzed oxidation of TMB by H2O2 to form a blue product. The method has a detection limit of 5.0 nM and a linear range from 10 nM to 20 μM. The assay is highly selective over other amino acids. It was successfully applied to the determination of cysteine in an injection containing a mixture of amino acids.
Graphical abstract The peroxidase-like activity of Au@Pt core-shell nanohybrids (Au@PtNHs) is selectively inhibited by cysteine, enabling the determination of cysteine.
  相似文献   

12.
A nanocomposite consisting of cadmium oxide decorated with carbon nanotubes (CdO.CNT NC) was prepared by a wet-chemical technique, and its optical, morphological, and structural properties were characterized by FTIR, UV/Vis, FESEM coupled to XEDS, XPS, and XRD methods. A flat glassy carbon electrode was modified with the nanocomposite to obtain a sensor for L-glutathione (GSH) which displays improved sensitivity, a large dynamic range and good long-term stability. The calibration plot (best acquired at a voltage of 0.5 V) is linear (r 2 = 0.99) in the 0.1 nM to 0.01 M GSH concentration range. The detection limit is as low as 30.0 pM, and the sensitivity is ~9.49 μA?μM?1?cm?2. To the best of our knowledge, this is the first report on the determination of GSH using such a modified glassy carbon electrode (GCE) in combination with I-V method. The GCE was applied to the selective determination of GSH in spiked rabbit serum samples and gave acceptable results.
Graphical abstract A selective glutathione biosensor based on wet-chemically prepared CdO.CNT/Nafion/GCE was fabricated by reliable I-V method and shows good analytical parameters such as high sensitivity, low detection limit, long-term stability, and large dynamic range.
  相似文献   

13.
The review (with 95 refs.) starts with an introduction that addresses the need for magnetic actuation in microfluidics. A second section describes the equations governing magnetic micromixing, with subsections on magnetic equations, fluid flow equations, and on convection–diffusion equations. The next section specifically covers magnetically actuated micromixers, with subsections on those actuated by external permanent magnets, by electromagnets, by microstirrers, and on micromixers with integrated electrodes. The conclusion summarizes the state of the art and addresses current challenges and trends.
Graphical abstract In this review, micromixers are classified into four types according to drive mode including external permanent magnet, electromagnet, microstirrer and the integrated electrode. The basic governing equations and operating rules of magnetic micromixers are given. The review is supposed to provide a helpful reference for those intending to study this field.
  相似文献   

14.
Conducting polymers possess good conductivity, can be easily modified, have a particular redox activity. Noble metal nanomaterials, in turn, possess high conductivity, catalytic properties and large surface-to-volume ratios. Synergistic materials consisting of both conducting polymer and metal nanomaterial therefore are most useful materials for use in electrochemical immunosensors with improved sensitivity and specificity. This review (with 75 references) gives an overview on advances in conducting polymer based noble metal nanomaterial hybrids for amperometric immunoassay of the 13 most common tumor markers. The review is divided into the following sections: (1) Polyaniline based noble metal nanomaterial hybrids; (2) Polyaniline derivative-based noble metal nanomaterial hybrids; (3) Polypyrrole-based noble metal nanomaterial hybrids. A final section covers future perspectives regarding challenges on the design of electrochemical immunoassays.
Graphical abstract Advances on conducting polymer and noble metal nanomaterial hybrids for amperometric immunoassay of tumor marker are reviewed. Future perspectives regarding challenges on the construction of electrochemical immunosensing interface for tumor marker are discussed.
  相似文献   

15.
Hydrothermal treatment of a mixture of ethylene diamine, phosphoric acid and citric acid under ambient pressure generates fluorescent carbon dots that are co-doped with phosphorus and nitrogen. These have features such as (a) both green fluorescence (peaking at 430 nm; 30% quantum yield) and red fluorescence (peaking at 500 nm, quantum yield 78%), (b) wavelength-dependent emission peaks, and (c) insensitivity to changes of pH values, dot concentration and ionic strength. The C-dots are useful for both fluorescent (FL) and photoacoustic (PA) imaging of living tissue. PA imaging warrants better spatial resolution and allows deeper tissues to be imaged compared to most optical imaging techniques. It is essential to assign a photoacoustic contrast agent as most of the diseases do not show a natural photoacoustic contrast in their early stage. The dually emitting C-dots are shown to be a useful contrast agent for PA and FL imaging of mice tumors. Intravenous administration of the C-dots resulted in strong signals in both PA and FL imaging.
Graphical abstract Photographs of the excitation wavelength-dependent fluorescence of P,N-doped C-dots obtained from ethylenediamine, phosphoric acid and citric acid. Intravenous administration of the C-dots resulted in strong signals in both photoacoustic (PA) and fluorescent (FL) imaging.
  相似文献   

16.
This work describes the preparation of carbon dots doped with terbium(III) (Tb-CDs) via a hydrothermal method, starting from terbium ion and ethylenediamine. The size, composition and spectral properties of the Tb-CDs were characterized by transmission electron microscopy, infrared spectra, and fluorescence spectra. The results show that doping of the CDs with Tb(III) reduces the particle size and results in more uniform particles, while fluorescence (at excitation/emission peaks of 380/475 nm) is strongly enhanced. The interaction between Tb-CDs and ct-DNA results in fluorescence quenching of Tb-CDs. The findings were exploited to design a quenchometric method for the determination of ct-DNA. The signal drops linearly in the 80 ng·mL?1 to 50 μg·mL?1 ct-DNA concentration range, and the detection limit is 53 ng·mL?1. The method was applied to the determination of ct-DNA in spiked samples and gave satisfactory results. The possible fluorescence quenching mechanism (which is mainly static) was investigated using the Stern–Volmer equation and thermodynamic equations.
Graphical abstract A kind of carbon dots doped with terbium(III) (Tb-CDs) were prepared via a hydrothermal method, using terbium ion and ethylenediamine as precursor. Doping with Tb(III) reduced the particle size of CDs and results in uniform particle size and stronger fluorescence. The interaction between the Tb-CDs and dsDNA results in quenching of the fluorescence of Tb-CDs and can be applied to determination of dsDNA.
  相似文献   

17.
Carbon dots (CDs) possess unique optical properties such as tunable photoluminescence (PL) and excitation dependent multicolor emission. The quenching and recovery of the fluorescence of CDs can be utilized for detecting analytes. The PL mechanisms of CDs have been discussed in previous articles, but the quenching mechanisms of CDs have not been summarized so far. Quenching mechanisms include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer (PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). Following an introduction, the review (with 88 refs.) first summarizes the various kinds of quenching mechanisms of CDs (including static quenching, dynamic quenching, FRET, PET and IFE), the principles of these quenching mechanisms, and the methods of distinguishing these quenching mechanisms. This is followed by an overview on applications of the various quenching mechanisms in detection and imaging.
Graphical abstract Schematic representation of the quenching mechanisms of carbon dots (CDs) which include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer(PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). All these effects can be used to detect and image analytes.
  相似文献   

18.
The authors describe a method for the preparation of orange-red emissive carbon dots (CDs) with excitation/emission peaks at 520/582 nm. The CDs were hydrothermally prepared by a one-pot strategy from trimesic acid and 4-aminoacetanilide. The fluorescence of the CDs is strongly quenched by hydrogen peroxide. The oxidation of glucose by glucose oxidase (GOx) produces H2O2 that quenches the fluorescence via static quenching. Based on this phenomenon, a fluorometric method was established for the determination of glucose. Under the optimum conditions, response is linear in the 0.5 to 100 μM glucose concentration range, with a 0.33 μM limit of detection. The method is selective for glucose over its analogues and was successfully applied to the determination of glucose in diluted human serum and in urine from diabetics and healthy individuals. Recoveries from spiked samples range from 98.7 to 102.5%.
Graphical abstract (a) One-step synthetic strategy of the CDs; (b) Schematic illustration of the CDs for glucose detection
  相似文献   

19.
The work describes a hybrid electrochemical sensor for highly sensitive detection of the anesthetic lidocaine (LID). Porous carbon (PC) was synthesized from an isoreticular metal-organic framework-8 (IRMOF-8) and drop cast onto a glassy carbon electrode (GCE). A layer of a molecularly imprinted polymer (MIP) layer was then fabricated in situ on the modified GCE by electro-polymerization, with LID acting as the template and resorcinol as the functional monomer. Hexacyanoferrate is used as an electrochemical probe. The electrical signal (typically acquired at 0.335 V vs. SCE) increases linearly in the 0.2 pM to 8 nM LID concentration range, with a remarkable 67 fM detection limit (at an S/N ratio of 3). The sensor is stable and selective. Eventually, rapid and accurate detection of LID in spiked real samples was successfully realized.
Graphical abstract ?
  相似文献   

20.
Carbon dots (CDs) modified with ethylene diamine (EDA) and the amino acids (AAs) Cys, His, Lys or Arg were synthesized, and their structures were confirmed by high resolution transmission electron microscopy, Raman spectrometry and X-ray photoelectron spectrometry. It is found that derivatization of the CDs with various AAs systemically modulates their electronic properties, and this results in a tunable selectivity in detection of metal cations via fluorescence quenching. The probes can be performed in aqueous solutions around pH 7. CDs can be excited under 345 nm excitation at room temperature and exhibit fluorescent peak at 450 nm. The decreasing fluorescence intensity is directly proportional to the concentration of metal cations. The limits of detection is 8.8 μg L?1 for Pb(II), 20 μg L?1 for Hg(II), 3.7 μg L?1 for Cu(II), 5.3 μg L?1 for Zn(II), 16 μg L?1 for Fe(III), and 7.2 μg L?1 for Cr(III), respectively. The different fluorescence response of the AA-modified CDs can be converted to logic gates and applied to photoelectronic nanoprobes by using microprocessors. In our perception, this assay has a large potential in terms of high-throughput screening for trace amounts of metal ions.
Graphical abstract Amino acid derivatized carbon dots with tunable selectivity were synthesized by a one pot method for fluorescent sensing of metal cations. The sensing events can be directly converted into different logic gates.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号