首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modular approach toward the synthesis of polymers containing dendron groups as side chains is developed using the Diels–Alder “click” reaction. For this purpose, a styrene‐based polymer appended with anthracene groups as reactive side chains was synthesized. First through third‐generation polyester dendrons containing furan‐protected maleimide groups at their focal point were synthesized. Facile, reagent‐free, thermal Diels–Alder cycloaddition between the anthracene‐containing polymer and latent‐reactive dendrons leads to quantitative functionalization of the polymer chains to afford dendronized polymers. The efficiency of this functionalization step was monitored using 1H and 13C NMR spectroscopy and FTIR and UV–vis spectrometry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 410–416, 2010  相似文献   

2.
A new strategy for the one‐pot preparation of ABA‐type block‐graft copolymers via a combination of Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) “click” chemistry with atom transfer nitroxide radical coupling (ATNRC) reaction was reported. First, sequential ring‐opening polymerization of 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) and 1‐ethoxyethyl glycidyl ether provided a backbone with pendant TEMPO and ethoxyethyl‐protected hydroxyl groups, the hydroxyl groups could be recovered by hydrolysis and then esterified with 2‐bromoisobutyryl bromide, the bromide groups were converted into azide groups via treatment with NaN3. Subsequently, bromine‐containing poly(tert‐butyl acrylate) (PtBA‐Br) was synthesized by atom transfer radical polymerization. Alkyne‐containing polystyrene (PS‐alkyne) was prepared by capping polystyryl‐lithium with ethylene oxide and subsequent modification by propargyl bromide. Finally, the CuAAC and ATNRC reaction proceeded simultaneously between backbone and PtBA‐Br, PS‐alkyne. The effects of catalyst systems on one‐pot reaction were discussed. The block‐graft copolymers and intermediates were characterized by size‐exclusion chromatography, 1H NMR, and FT‐IR in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

4.
Facile prepolymerization and postpolymerization functionalization approaches to prepare well‐defined fluorescent conjugated glycopolymers through Cu(I)‐catalyzed azide/alkyne “Click” ligation were explored. Two well‐defined carbazole‐based fluorescent conjugated glycopolymers were readily synthesized based on these strategies and characterized by 1H NMR, 13C NMR, IR spectra, and UV‐vis spectra. The “Click” ligation offers a very effective conjugation method to covalently attach carbohydrate residues to fluorescent conjugated polymers. In addition, the studies of carbohydrate–lectin interactions were performed by titration of concanavalin A (Con A) to D ‐glucose‐bearing poly(anthracene‐alt‐carbazole) copolymer P‐2 resulting in significant fluorescence quenching of the polymer due to carbohydrate–lectin interactions. When peanut agglutinin (PNA) was added, no distinct change in the fluorescent properties of P‐2 was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2948–2957, 2009  相似文献   

5.
Lactam groups were introduced onto the backbone of hydroxyethyl cellulose (HEC) to modify properties, such as solubility in organic solvents and solution viscosity and to introduce possible antibacterial activity. Functionalization was achieved using 1‐(hydroxymethyl)‐2‐pyrrolidinone (HMP), and the functionalization reactions were investigated using NMR spectroscopy. The covalent attachment between HEC and HMP was confirmed using 1H‐13C correlated NMR experiments. Degrees of functionalization were calculated using integrated 13C NMR spectra, with values of up to 0.9 being demonstrated on the primary alcohol functionality of HEC. The functionalized HECs showed markedly different properties to unfunctionalized HEC, including the ability to swell considerably in water. Functionalized HEC displayed increased thermal stability and reduced solution viscosity compared with unfunctionalized HEC. Moreover, functionalization altered the bacterial adhesion characteristics compared with unfunctionalized HEC. © 2014 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 68–78  相似文献   

6.
The graft copolymers composed of “Y”‐shaped polystyrene‐b‐poly(ethylene oxide)2 (PS‐b‐PEO2) as side chains and hyperbranched poly(glycerol) (HPG) as core were synthesized by a combination of “click” chemistry and atom transfer radical polymerization (ATRP) via “graft from” and “graft onto” strategies. Firstly, macroinitiators HPG‐Br were obtained by esterification of hydroxyl groups on HPG with bromoisobutyryl bromide, and then by “graft from” strategy, graft copolymers HPG‐g‐(PS‐Br) were synthesized by ATRP of St and further HPG‐g‐(PS‐N3) were prepared by azidation with NaN3. Then, the precursors (Bz‐PEO)2‐alkyne with a single alkyne group at the junction point and an inert benzyl group at each end was synthesized by sequentially ring‐opening polymerization (ROP) of EO using 3‐[(1‐ethoxyethyl)‐ethoxyethyl]‐1,2‐propanediol (EEPD) and diphenylmethylpotassium (DPMK) as coinitiator, termination of living polymeric species by benzyl bromide, recovery of protected hydroxyl groups by HCl and modification by propargyl bromide. Finally, the “click” chemistry was conducted between HPG‐g‐(PS‐N3) and (Bz‐PEO)2‐alkyne in the presence of N,N,N′,N″,N”‐pentamethyl diethylenetriamine (PMDETA)/CuBr system by “graft onto” strategy, and the graft copolymers were characterized by SEC, 1H NMR and FTIR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
A series of random copolymers poly(3‐ethynylthiophene)‐copoly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) with different oxadiazole content ( P2 – P4 ) and homopolymer poly(3‐ethynylthiophene) ( P1 ) as well as poly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P5 ) were prepared. The copolymers ( P2 – P4 ) are completely soluble in common organic solvents. The structures and properties of all polymers were characterized and evaluated by FTIR, 1H NMR, 13C NMR, TGA, UV, PL, GPC, and nonlinear optical (NLO) analyses. The incorporation of diaryl‐oxadiazole into polyacetylene‐containing thiophene significantly endows copolymers with higher thermal stability, which may origin from the synergetic effect of the “jacket effect” of diaryl‐oxadiazole units and the effect of retarding or eliminating a few 6π‐electrocycliaztion proceeds of oxadiazole‐containing polyacetylene due to the hindrance of thiophene units. When the copolymer ( P3 ) posses more regular alternating thiophene pendants and oxadiazole pendants arrangement along the polymer backbone, it shows good thermal stability (Td up to 388 °C) and larger third‐order nonlinear optical susceptibility (χ(3) up to 11.0 × 10?11 esu). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

9.
Nitroxyl radicals were used as functionalizing agents during the free radical postreactor modification process of polyolefins carried out in the melt. The 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (HO‐TEMPO) and the 4‐benzoyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (BzO‐TEMPO) free radicals were successfully grafted onto a polyethylene‐based material (ethylene‐co‐1‐octene copolymer) by coupling reaction with polymer macroradicals; these last were formed by H‐abstraction through peroxide addition. The macromolecular structure of the functionalized polyolefins was assessed by 1H‐NMR, FTIR spectroscopy, and SEC measurements which were used to evidence the grafting site, to evaluate the grafting level and to highlight the occurrence of chain extension through crosslinking side reactions. Indeed the use of proper model compounds allowed the preparation of accurate FTIR calibration curves for the quantitative determination of the functionalization degree. Besides the high temperature SEC analysis highlighted that this fast and simple coupling reaction between macroradicals and nitroxyl free radicals grants the grafting of functionalities onto the polyolefin backbone by contemporarily preventing the side reactions liable of the structure and MW modification of the pristine polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Molecularly imprinted hydrogels for the capture of the peptide hormone hepcidin were prepared by water‐in‐oil (w/o) suspension polymerization under mild conditions. Spherical and relatively uniformly sized gel beads were routinely obtained after optimization of the synthetic methodology. The polymers were analyzed by Fourier transform infrared spectroscopy, optical microscopy, and scanning electron microscopy. Although the imprinted materials exhibited higher affinity towards the epitope template (hepcidin N‐terminus) than their corresponding blank polymers, the full‐length target peptide was found strongly bound to all the hydrogels tested. However, by using whole fluorescent hepcidin as the print species, the imprinting effect was more pronounced. Moreover, bovine serum albumin did not bind to the poly N‐isopropylacrylamide (PNIPAm)‐based polymers. Thus, polymeric “sponges” for biomacromolecules with size‐exclusion effect were developed, useful for peptide concentration, immobilization and/or purification from serum samples. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1721–1731, 2010  相似文献   

12.
A novel N‐hydroxy succinimide‐based carbonate monomer that allows direct synthesis of polymers incorporating a reactive carbonate group in the side chain was synthesized. This new monomer was copolymerized with methyl methacrylate and poly(ethylene glycol) methylether methacrylate using free‐radical polymerization to obtain organo‐ and water‐soluble reactive copolymers. Copolymerization of the activated carbonate monomer with an azide‐containing monomer and N‐hydroxy succinimide‐containing activated ester monomer provided orthogonally functionalizable copolymers. The pendant reactive carbonate groups of the copolymers were functionalized with amines to obtain carbamates. Polymers capable of orthogonal functionalization could be selectively functionalized as desired using subsequent 1,3‐dipolar cycloaddition or amidation reactions. The novel monomer and the copolymers were characterized by 1H‐NMR, 13C‐NMR, and infrared spectroscopy. The efficient stepwise orthogonal functionalization of the copolymers were examined via 1H‐NMR spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Novel, fluorinated copolymers with different architectures bearing sulfopropyl groups were synthesized in a three‐step procedure. The first step involved atom transfer radical polymerization (ATRP) of aromatic fluorinated monomers followed by two modification reactions performed on the polymer chain: demethylation and sulfopropylation. As a result two types of fluorinated copolymers were obtained. The first one was synthesized by ATRP of 2,3,5,6‐tetrafluoro‐4‐methoxystyrene (TFMS). After the modification steps copolymers with randomly distributed sulfopropyl groups along the backbone were obtained. The second type of copolymers has diblock architecture with one of the blocks being sulfopropylated. They were synthesized via ATRP of 2,3,4,5,6‐pentafluorostyrene (FS) initiated by a PTFMS‐macroinitiator followed by demethylation and sulfopropylation of the TFMS‐block. The copolymers were characterized by size‐exclusion chromatography, FTIR, and 1H NMR spectroscopy. Their thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7827–7834, 2008  相似文献   

14.
Dendronized copolymers bearing two different dendrons as side chains have been synthesized using a modular orthogonal “double‐click” reaction based strategy. The orthogonality of the Huisgen‐type azide‐alkyne cycloaddition and the Diels–Alder reaction was utilized to attach different dendrons to the polymer backbone via the “graft‐to” strategy. First through third generations of polyaryl ether dendrons appended with an alkyne group and polyester dendrons possessing a furan‐protected maleimide group at their focal point were reacted with a styrene based copolymer containing azide and anthracene moieties as side chains. The efficiency and selectivity of the orthogonal dendronization of the copolymers were examined via various analytical methods such as 1H NMR spectroscopy, FTIR and gel permeation chromatography. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5029–5037  相似文献   

15.
Glycopolymers based on the incorporation of a diaminobutylmaltotrionolactone onto activated ethylene‐vinyl alcohol, EVOH, copolymers with distinct composition in the former counit have been prepared. Previous transformation of initial hydroxyl EVOH groups to other more reactive functional groups has been required. The activation has been performed in this current investigation by functionalization with either 4‐nitrophenyl carbonate or o‐phthalic acid groups. The structure of the resulting novel water‐soluble glycopolymers has been confirmed by FTIR, 1H and 13C‐NMR spectroscopies. In addition, the glass transition temperatures and thermal stability as well as the viscoelastic behavior in bulk and in water solution have been examined as a function of chemical linkage nature. The rheological evaluation confirms the reversible gel formation in all the cases. Finally, their affinity to Concanavalin A lectin has been also analyzed proving the feasible use of these glycopolymers as molecular recognition materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 719–729, 2010  相似文献   

16.
A series of novel hyperbranched poly(ester‐amide)s (HBPEAs) based on neutral α‐amino acids have been synthesized via the “AD + CBB′” couple‐monomer approach. The ABB′ intermediates were stoichiometrically formed through thio‐Michael addition reaction because of reactivity differences between functional groups. Without any purification, in situ self‐polycondensations of the intermediates at elevated temperature in the presence of a catalyst afforded HBPEAs with multihydroxyl end groups. The degrees of branching (DBs) of the HBPEAs were estimated to be 0.40–0.58 and 0.24–0.54 by quantitative 13C NMR with two different calculation methods, respectively, depending on polymerization conditions and structure of monomers. The influences of catalyst, temperature, and intermediate structure on the polymerization process and molecular weights as well as properties of the resultant polymers were investigated. FTIR, NMR, and DEPT‐135 NMR analyses revealed the branched structure of the resultant polymers. The HBPEAs possess moderately high molecular weights with broad distributions, glass transition temperatures in the range of ?25.5 to 36.5 °C, and decomposition temperatures at 10% weight loss under nitrogen and air in the regions of 243.4–289.1 °C and 231.4–265.6 °C, respectively. Among them, those derived from D ,L ‐phenylalanine display the lowest degree of branching, whereas the highest glass transition temperature and the best thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Surface functionalization of CNTs (SWCNTs or MWCNTs) with dendronized alkoxy terpyridine‐Ru(II)‐terpyridine complexes has been accomplished using either the “grafting to” or the “grafting from” approaches. Different sets of easily processable hybrid metallo‐CNTs composites have been efficiently synthesized bearing either monomeric or polymeric side chain tpy‐Ru(II)‐tpy dicomplexes. Their characterization through TGA, UV‐Vis, and Raman techniques revealed various modification degrees depending on the methodology employed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2551–2559, 2009  相似文献   

18.
A simple method for preparing cross‐linked hydrogels in an aqueous medium is investigated using Diels‐Alder (DA) “click” reaction, without employing a catalyst. A polymeric diene is first synthesized by the functionalization of poly(2‐aminoethyl methacrylate) hydrochloride with furfural. Suited bisdienophiles are prepared by modification of Jeffamine® ED of different molecular weights with maleic anhydride. Both precursors of the DA coupling are thoroughly characterized before their reactions. The ensuing hydrogels are analyzed in terms of their microstructure, swelling, and rheological behavior, as a function of the reaction conditions. The influence of the molecular weight of the cross‐linker and the furan‐to‐maleimide ratio on the final properties of the hydrogels were also investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 699–708  相似文献   

19.
A novel approach to fabricate polymer brushes on the surface of carbon nanotubes (CNTs) is proposed. Carboxyl groups on the surface of chemically oxidized CNTs were reacted with hexamethylene diisocyanate, followed by a reaction with methacrylamide to give terminal vinyl groups‐functionalized CNTs, so called “CNT‐mer.” The synthetic procedure was investigated step‐by‐step and the synthesized CNT‐mer was used to grow polystyrene (PS) from CNTs by a simple in situ polymerization in the presence of a thermal initiator. By employing 1H NMR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and light scattering, the experimental results were verified. Using this approach, 45% PS with respect to CNTs are grafted on the surface of CNTs with about 4.0 nm thickness. This novel technique would provide a facile route to prepare tailor‐made polymer brushes on the surface of CNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6394–6401, 2006  相似文献   

20.
Organo‐modified layered silicates were synthesized and used as inorganic carriers for CoCl2(PtBu2Me)2‐MAO catalyst in the polymerization of 1,3‐butadiene, yielding cis‐1,4‐enriched polybutadiene. The organoclays were prepared by: (i) intercalation of (ar‐vinyl‐benzyl)trimethyl ammonium chloride salt through an ion exchange reaction, and (ii) the edge‐surface grafting by trimethylchlorosilane. The ammonium modifier acts as “spacer” increasing the layer d‐spacing and as “filler” favoring the silylation of the edge‐surface clay hydroxyls. The grafted silane prevents the MAO cocatalyst from reacting with the edge‐OHs, by forcing it to react within the interlayer clay region. MAO lead to methylation of the cobalt complex and carbanion abstraction to give a cobalt‐methyl cation that is stabilized by the MAO anion. The nanoconfined cationic alkylated species insert the butadiene on the Co‐Me bond affording the growth of the polymer chains within the clay layers. The growing of the macromolecular chains fills the interlayer silicate region giving an intercalated polybutadiene rubber nanocomposite. The role of the silicate organo modification on the heterogeneous catalyst structural features, the polymerization behavior and the nanocomposite structures are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号