首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microwave irradiation was applied to synthesize poly(ε‐caprolactam‐co‐ε‐caprolactone) directly from the anionic catalyzed ring opening of two cyclic monomers, ε‐caprolactam and ε‐caprolactone using a variable frequency microwave furnace, programmed to a set temperature and controlled by a pulsed power on–off system. Dielectric properties of ε‐caprolactam, ε‐caprolactone, and their mixture were measured in the microwave range from 0.4 to 3 GHz, showing that both ε‐caprolactam and ε‐caprolactone exhibited effective absorption of microwave energy to induce a fast chemical reaction. The microwave induced anionic copolymerization of ε‐caprolactam and ε‐caprolactone generated copoly(amide‐ester)s in yields as high as 70%. Conventional thermal and microwave copolymerization studies were also conducted for comparison with the microwave results. These studies demonstrated that an effective and efficient microwave method to copolymerize ε‐caprolactam with ε‐caprolactone in higher yield, higher amide content, and higher Tg 's, relative to the thermal process, has been developed. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1379–1390, 2000  相似文献   

2.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

3.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

4.
Polyamides (PA) constitute one of the most important classes of polymeric materials and have gained strong position in different areas, such as textiles, fibers, and construction materials. Whereas most PA are synthesized by step‐growth polycondensation, PA 6 is synthesized by ring opening polymerization (ROP) of ε‐caprolactam (ε‐CLa). The most popular ROP methods involve the use of alkaline metal catalyst difficult to handle at large scale. In this article, we propose the use of organic acids for the ROP of ε‐CLa in bulk at 180 °C (below the polymer's melting point). Among evaluated organic acids, sulfonic acids were found to be the most effective for the polymerization of ε‐CLa , being the Brønsted acid ionic liquid: 1‐(4‐sulfobutyl)?3‐methylimidazolium hydrogen sulfate the most suitable due to its higher thermal stability. End‐group analysis by 1H nuclear magnetic resonance and model reactions provided mechanistic insights and suggested that the catalytic activity of sulfonic acids was a function of not only the acid strength, but of the nucleophilic character of conjugate base as well. Finally, the ability of sulfonic acid to promote the copolymerization of ε‐CLa and ε‐caprolactone is demonstrated. As a result, poly(ε‐caprolactam‐co‐ε‐caprolactone) copolymers with considerably randomness are obtained. This benign route allows the synthesis of poly(ester amide)s with different thermal and mechanical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2394–2402  相似文献   

5.
We report the coating of maghemite (γ‐Fe2O3) nanoparticles with poly(ε‐caprolactone) (PCL) through a covalent grafting to technique. ω‐Hydroxy‐PCL was first synthesized by the ring‐opening polymerization of ε‐caprolactone with aluminum isopropoxide and benzyl alcohol as a catalytic system. The hydroxy end groups of PCL were then derivatized with 3‐isocyanatopropyltriethoxysilane in the presence of tetraoctyltin. The triethoxysilane‐functionalized PCL macromolecules were finally allowed to react on the surface of maghemite nanoparticles. The composite nanoparticles were characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Effects of the polymer molar mass and concentration on the amount of polymer grafted to the surface were investigated. Typical grafting densities up to 3 μmol of polymer chains per m2 of maghemite surface were obtained with this grafting to technique. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6011–6020, 2004  相似文献   

6.
The graft polymerization of ε‐caprolactone (ε‐CL) onto magnetite was carried out under microwave irradiation in the presence of tin(II) 2‐ethylhexanoate. The molar ratio of ε‐CL to tin(II) 2‐ethylhexanoate was 300, whereas the molar ratio of ε‐CL to magnetite was 5. The chemical structures of the obtained poly(ε‐caprolactone) coated magnetic nanoparticles were characterized by FTIR and XPS spectroscopy. These magnetic‐polymer hybrid nanostructures were further investigated by X‐ray diffraction and magnetization measurements. The morphology of the magnetic core‐shell nanostructures were determined by TEM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5397–5404, 2009  相似文献   

7.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

8.
The recently introduced procedure of quantitatively switching thiocarbonyl thio capped (RAFT) polymers into hydroxyl terminated species was employed to generate narrow polydispersity (PDI ≈ 1.2) sulfur‐free poly(styrene)‐block‐poly(ε‐caprolactone) polymers (26,000 ≤ Mn/g·mol?1 < 45,000). The ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) was conducted under organocatalysis employing 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). The obtained block copolymers were thoroughly analyzed via size exclusion chromatography (SEC), NMR, as well as liquid adsorption chromatography under critical conditions coupled to SEC (LACCC‐SEC) to evidence the block copolymer structure and the efficiency of the synthetic process. The current contribution demonstrates that the RAFT process can serve as a methodology for the generation of sulfur‐free block copolymers via an efficient end group switch. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
Poly(ε‐caprolactone)/montmorillonite nanocomposites were prepared maintaining a constant inorganic content with three means: melt blending of poly(ε‐caprolactone) with natural or organomodified clays, in situ polymerization of ε‐caprolactone in the presence of organomodified clays, and initiation of ε‐caprolactone polymerization from the silicate layer with appropriate organomodified montmorillonites and activator. In this last case, the polymer chains were grafted to the silicate layers and it was possible to tune up the grafting density. The presence of clays did not modify the polymer crystallinity. It was shown that the in situ polymerization process from the clay surface improved the clay dispersion. The gas barrier properties of the different composite systems were discussed both as a function of the clay dispersion and of the matrix/clay interactions. The highest barrier properties were obtained for an exfoliated morphology and the highest grafting density. Similar evolution of the permeability and the diffusion coefficients was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 205–214, 2005  相似文献   

11.
The polymerization of ε‐caprolactone (ε‐CL) has been assessed in water using various Brønsted acids as catalysts. The reaction was found to be quantitative at 100 °C, leading to number–average molecular weights up to 5000 g mol?1. The Brønsted acid‐catalyzed polymerization of ε‐CL in water was further conducted in the presence of water‐soluble polysaccharides thereby affording graft copolymers. The approach enables an easy, mild access to dextran hydroxyesters. For low degree of substitution, the latter self‐assembles in water to form nanoparticles. Poly(ε‐CL)‐graft‐methylcellulose copolymers can also be obtained via a similar approach. It is noteworthy that the methodology reported herein is a one‐step route to poly(ε‐CL)‐graft‐water‐soluble polysaccharides, operating in mild conditions, that is, at low temperatures, using readily available metal‐free catalysts and water as a solvent. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2139–2145  相似文献   

12.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

13.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

15.
A hydroxy‐functionalized bipyridine ligand was polymerized with ε‐caprolactone utilizing the controlled ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. The resulting poly(ε‐caprolactone)‐containing bipyridine was characterized by 1H NMR and IR spectroscopy, and gel permeation chromatography, as well as matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, revealing the successful incorporation of the bipyridine ligand into the polymer chain. Coordination to iridium(III) and ruthenium(II) precursor complexes yielded two macroligand complexes, which were characterized by NMR, gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight MS, cyclic voltammetry, and differential scanning calorimetry. In addition, both photophysical and electrochemical properties of the metal‐containing polymers proved the formation of a trisruthenium(II) and a trisiridium(III) polypyridyl species, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4153–4160, 2004  相似文献   

16.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

17.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

18.
Resorbable poly(ester anhydride) networks based on ε‐caprolactone, L ‐lactide, and D,L ‐lactide oligomers were synthesized. The ring‐opening polymerization of the monomers yielded hydroxyl telechelic oligomers, which were end‐functionalized with succinic anhydride and reacted with methacrylic anhydride to yield dimethacrylated oligomers containing anhydride bonds. The degree of substitution, determined by 13C NMR, was over 85% for acid functionalization and over 90% for methacrylation. The crosslinking of the oligomers was carried out thermally with dibenzoyl peroxide at 120 °C, leading to polymer networks with glass‐transition temperatures about 10 °C higher than those of the constituent oligomers. In vitro degradation tests, in a phosphate buffer solution (pH 7.0) at 37 °C, revealed a rapid degradation of the networks. Crosslinked polymers based on lactides exhibited high water absorption and complete mass loss in 4 days. In ε‐caprolactone‐based networks, the length of the constituent oligomer determined the degradation: PCL5‐AH, formed from longer poly(ε‐caprolactone) (PCL) blocks, lost only 40% of its mass in 2 weeks, whereas PCL10‐AH, composed of shorter PCL blocks, completely degraded in 2 days. The degradation of PCL10‐AH showed characteristics of surface erosion, as the dimensions of the specimens decreased steadily and, according to Fourier transform infrared, labile anhydride bonds were still present after 90% mass loss. © 2003 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3788–3797, 2003  相似文献   

19.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

20.
Here, we report on the synthesis and different crystallization behavior of linear‐ and star‐ PCL's containing a photocleavable linker (5‐hydroxy‐2‐nitro benzaldehyde), modulated by photochemical switching. Basis is the attachment of a photocleavable moiety close to the star‐core of a three‐arm star poly(caprolactone), so that the crystallization behavior can be controlled via a photochemical stimulus. The polymerization of ε‐caprolactone using a trivalent photocleavable initiator and stannous octanoate catalyst resulted in the synthesis of different molecular weights of star‐shaped photocleavable polymers. Various techniques like 1H NMR and ESI‐TOF‐MS confirmed the successful synthesis of the star‐shaped polymers. Complete photocleavage is ensured via GPC, HPLC, and ESI‐TOF‐MS. DSC studies clearly indicated the enhancement in crystallinity after photocleavage of the star‐shaped poly(ε‐caprolactone)s. Hence, for the first time phototriggered crystallization behavior of PCL polymers is reported, where the confinement exerted by the star architecture is removed by photoirradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 642–649  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号